Cho tam giác ABC. Chứng minh rằng: cotA + cotB + cotC

Lời giải Bài 7 trang 79 Toán 10 sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 10.

298


Giải Toán lớp 10 Bài tập cuối chương 4

Bài 7 trang 79 Toán lớp 10 Tập 1Cho tam giác ABC. Chứng minh rằng:

cotA + cotB + cotC = R(a2+b2+c2)abc

Lời giải:

Ta có:     cotA + cot B + cot C

=cosAsinA+cosBsinB+cosCsinC

Mà áp dụng hệ quả của định lí côsin ta có:

cosA=b2+c2a22bccosB=a2+c2b22accosC=a2+b2c22ab

cotA+cotB+cotC=b2+c2a22bc.sinA+a2+c2b22ac.sinB+b2+a2c22ab.sinC

 (1)

Ta có: SABC=12bcsinA=12absinC=12absinB (2)

Kết hợp (1) và (2) ta được:

cotA+cotB+cotC=b2+c2a24SABC+a2+c2b24SABC+b2+a2c24SABC

                                =b2+c2a2+c2+a2b2+a2+b2c24SABC=a2+b2+c24SABC

                               

                             =a2+b2+c24.abc4R=R.(a2+b2+c2)abc    (đpcm)

Bài viết liên quan

298