Top 50 Câu trắc nghiệm Toán học 12 Giải tích Ôn tập chương 4 (có đáp án)
Bộ câu hỏi trắc nghiệm Toán học lớp 12 có đáp án, chọn lọc năm 2021 – 2022 mới nhất gồm các câu hỏi trắc nghiệm đầy đủ các mức độ nhận biết, thông hiểu, vận dụng, vận dung cao. Hy vọng với tài liệu trắc nghiệm Toán học lớp 12 sẽ giúp học sinh củng cố kiến thức, ôn tập và đạt điểm cao trong các bài thi trắc nghiệm môn Toán học 12
Bài 1: Phần ảo của số phức z = (1 + √i)3 là
A. 3√3
B. -3√3
C. – 8i
D. –8.
Ta có: z = i(1 + √3i)3 = i(1 + 3√3i - 9 - 3√3i) = -8i .
Vậy phần ảo của z là -8
Bài 2: Cho số phức z thỏa mãn (1 + i)(z - i) + 2z = 2i. Môđun của số phức:
A. 2
B. 4
C. √10
D. 10
Đặt z = a + bi(a, b ∈ R). Ta có :
(1 + i)(z - i) = (1 + i)[a + (b - 1)i] = a - b + 1 + (a + b - 1)i
Từ giả thiết ta có: (1 + i)(z - 1) + 2z = 2i
⇔ a - b + 1 + (a + b - 1)i + 2(a + bi) = 2i ⇔ (3a - b + 1) + (a + 3b - 1)i = 2i
Suy ra z = 1 và
Bài 3: Cho số phức z thỏa mãn
Khi đó môđun của số phức w = 1 + z + z2 là
A. 5
B. √13
C. 13
D. √5
Đặt z = a + bi(a, b ∈ R). Ta có
⇔ 5a - 5(b - 1)i = (2 - i)(a + 1 + bi)
⇔ 3a - b - 2 + (a - 7b + 6)i = 0
Suy ra z = 1 + i và w = 1 + (1 + i) + (1 + i)2 = 2 + 3i.
Vậy: |w| = √(4 + 9) = √13
Bài 4: Phương trình z2 - 2z + 3 = 0 có các nghiệm là
A. 2±2√2i
B. -2±2√2i
C. -1±2√2i
D. 1±2√2i
Bài 5: Phương trình z4 - 2z2 - 3 = 0 có 4 nghiệm phức z1, z2, z3, z4. Giá trị biểu thức T = |z1|2 + |z2|2 + |z3|2 + |z4|2 bằng
A. 4
B. 8
C. 2√3
D. 2 + 2√3
Phương trình tương đương với: z2 = -1 = i2 hoặc z2 = 3. Các nghiệm của phương trình là: z1 = i, z2 = -i, z3 = √3, z4 = -√-3.
Vậy T = 1 + 1 + 3 + 3 = 8
Phương trình tương đương với: z2 = -1 = i2 hoặc z2 = 3. Các nghiệm của phương trình là: z1 = i, z2 = -i, z3 = √3, z4 = -√-3.
Vậy T = 1 + 1 + 3 + 3 = 8
Bài 6: Tập hợp các điểm biểu diễn số phức z thỏa mãn |z - 2i| = 4 là
A. Đường tròn tâm I(1; -2) bán kính R = 4
B. Đường tròn tâm I(1; 2) bán kính R = 4
C. Đường tròn tâm I(0; 2) bán kính R = 4
D. Đường tròn tâm I(0; -2) bán kính R = 4
Đặt z = a + bi(a, b ∈ R). Ta có:
|z - 2i| = 4 ⇔ |a + (b - 2)i| = 4
Vậy tập các điểm biểu diễn số phức z là đường tròn tâm I(0 ;2), bán kính R = 4
Bài 7: Tập hợp các điểm biểu diễn số phức z thỏa mãn |z− + 3 - 2i| = 4 là
A. Đường tròn tâm I(3; 2) bán kính R = 4
B. Đường tròn tâm I(3; -2) bán kính R = 4
C. Đường tròn tâm I(-3; 2) bán kính R = 4
D. Đường tròn tâm I(-3; -2) bán kính R = 4
Đặt z = a + bi(a, b ∈ R). Ta có: |z− + 3 - 2i| = 4 ⇔ |a - bi + 3 - 2i| = 4
⇔ |(a + 3) - (b + 2)i| = 4
Vậy tập các điểm biểu diễn số phức z là đường tròn tâm I(-3 ;-2), bán kính R = 4
Bài 8: Cho hai số phức z1 = 1 + 2i, z2 = 2 - 3i . Phần thực và phần ảo của số phức w = 3z1 - 2z2 là
A. 1 và 12
B. -1 và 12
C. –1 và 12i
D. 1 và 12i.
Ta có: w = 3z1 - 2z2 = 3(1 + 2i) - 2(2 - 3i) = -1 + 2i.
Vậy phần thực và phần ảo của w là -1 và 12
Bài 9: Phần thực và phần ảo của số phức z = (1 + √3i)2 là
A. 1 và 3
B. 1 và -3
C. -2 và 2√3
D. 2 và -2√3 .
Ta có: z = 1 + 2√3 + 3i2 = -2 + 2√3i
Vậy phần thực và phần ảo của z là -2 và 2√3
Bài 10: Cho số phức z thỏa mãn: i.z− + z = 2 + 2i và z.z− = 2. Khi đó z2 bằng:
A. 2
B. 4
C. – 2i
D. 2i.
Đặt z = a + bi(a, b ∈ R). Ta có: z− = a - bi và z.z− = a2 + b2 = 2(1)
Ta có: i.z− + z = 2 + 2i ⇔ i(a - bi) + a + bi = 2 + 2i
⇔ a + b + (a + b)i = 2 + 2i ⇔ a + b = 2 (2)
Từ (1) và (2) suy ra a = b = 1. Suy ra z=1+i
Vậy z2 = (1 + i)2 = 1 + 2i - 1 = 2i
Bài 11: Thực hiện phép tính:
ta có:
A. T = 3 + 4i
B. T = -3 + 4i
C. T = 3 – 4i
D. T = -3 – 4i.
Ta có:
=> T = -3 + 4i
Bài 12: Môđun của số phức z thỏa mãn điều kiện z + (2 - i)z− = 13 - 3i là
A. 3
B. 5
C. 17
D. √17
Môđun của số phức z thỏa mãn điều kiện z + (2 - i)z− = 13 - 3i là:
Đặt z = a + bi(a, b ∈ R). Ta có: z− = a - bi và (2 - i)z− = (2 - i)(a - bi) = 2a - 2bi - ai - b = 2a - b - (2b + a)i
Do đó : z = (2 - i)z− = 13 - 3i ⇔ a + bi + 2a - b - (2b + a)i = 13 - 3i
Bài 13: Phần thực và phần ảo của số phức z thỏa mãn (1 - i)z - 1 + 5i = 0 là
A. 3 và –2
B. 3 và 2
C. 3 và – 2i
D. 3 và 2i.
Ta có: (1 - i)z - 1 + 5i = 0 ⇔ (1 - i)z = 1 - 5i
Vậy phần thực và phần ảo của z là 3 và -2
Bài 14: Môđun của số phức z thỏa mãn điều kiện (3z - z−)(1 + i) - 5z = 8i - 1 là
B. 1
B. 5
C. √13
D. 13.
Đặt z = a + bi(a, b ∈ R).
Ta có: z− = a - bi và 3z - z− = 3(a + bi) - (a - bi) = 2a + 4bi,
Do đó: (3z - z−)(1 + i) = 2a - 4b + (2a + 4b)i - 5(a + bi) = 8i - 1
Theo giả thiết: (2a - 4b) + (2a + 4b)i - 5(a + bi) = 8i - 1
⇔ -3a - 4b + (2a - b)i = -1 + 8i
Bài viết liên quan
- Top 50 Câu trắc nghiệm Toán học 12 Giải tích Bài 17 (có đáp án)
- Top 50 Câu trắc nghiệm Toán học 12 Giải tích Bài 18 (có đáp án)
- Top 50 Câu trắc nghiệm tổng hợp Toán học 12 Giải tích (có đáp án)
- Top 50 Câu trắc nghiệm Toán học 12 Hình học Bài1 (có đáp án)
- Top 50 Câu trắc nghiệm Toán học 12 Hình học Bài 2 (có đáp án)