Top 50 Câu trắc nghiệm Toán học 12 Giải tích Bài 15 (có đáp án)

Bộ câu hỏi trắc nghiệm Toán học lớp 12 có đáp án, chọn lọc năm 2021 – 2022 mới nhất gồm các câu hỏi trắc nghiệm đầy đủ các mức độ nhận biết, thông hiểu, vận dụng, vận dung cao. Hy vọng với tài liệu trắc nghiệm Toán học lớp 12 sẽ giúp học sinh củng cố kiến thức, ôn tập và đạt điểm cao trong các bài thi trắc nghiệm môn Toán học 12

437
  Tải tài liệu

Top 50 Câu trắc nghiệm Toán học 12 Giải tích Bài 15 (có đáp án)

Bài 1: Tìm các số thực x, y sao cho (x – 2y) + (x + y + 4).i = (2x + y) + 2yi.

A. x = 3, y = 1    

B. x = 3, y = -1

C. x = -3, y = -1    

D. x = -3, y = 1

Ta có (x – 2y) + (x + y + 4).i = (2x + y) + 2yi.

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vậy x = -3, y = 1.

Chọn đáp án D.

Bài 2: Môđun của số phức z = 2 - √3i là

A. √7    

B. 2 + √3   

C. 2 - √3   

D. 7

Ta có: z = 2 - √3i

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 3: Số phức z = 1 - 2i có điểm biểu diễn là

A. M (1; 2)   

B. M (1; -2)   

C. M (-1; 2)   

D. M (-1; -2)

Số phức z = 1 - 2i có điểm biểu diễn là M(1; -2).

Bài 4: Hai điểm biểu diễn hai số phức liên hợp z = 1 + i và z = 1 - i đối xứng nhau qua

A. Trục tung   

B. Trục hoành   

C. Gốc tọa độ   

D. Điểm I (1; -1)

Hai điểm biểu diễn của z = 1 + i và z = 1 - i là M(1; 1) và N(1; -1) đối xứng với nhau qua trục Ox.

Bài 5: Tập hợp các điểm biểu diễn số phức z thỏa mãn |z| = 2 là

A. Hai đường thẳng   

B. Đường tròn bán kính bằng 2

C. Đường tròn bán kính bằng 4   

D. Hình tròn bán kính bằng 2.

Gọi M là diểm biểu diễn của z. Ta có: |z| = 2 ⇔ OM = 2

Vậy quỹ tích của M là đường tròn tâm là gốc tọa độ O và bán kính R = 2.

Bài 6: Gọi A, B là các điểm biểu diễn của các số phức z1 = -1 + 2i, z2 = 2 + 3i . Khi đó, độ dài đoạn thẳng AB là

A. √26   

B. √5 + √13   

C. √10   

D. 10

Ta có: A(-1;2), B(2,3). Do đó:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 7: Cho số phức z = 2 – 2i. Tìm khẳng định sai.

A. Phần thực của z là: 2.

B. Phần ảo của z là: -2.

C. Số phức liên hợp của z là z = -2 + 2i.

D. Môđun của z là

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Số phức liên hợp của z là z = 2 + 2i nên khẳng định C là sai.

Chọn đáp án C.

Bài 8: Cho số phức z = -1 + 3i. Phần thực, phần ảo của z là

A. -1 và 3    

B. -1 và -3    

C. 1 và -3    

D. -1 và -3i.

Ta có z = -1 + 3i => z = -1 - 3i

Vậy phần thực và phần ảo của z là -1 và -3.

Chọn đáp án B.

Bài 9: Môđun của số phức z thỏa mãn z = 8 - 6i là

A. 2   

B. 10    

C. 14    

D. 2√7

Ta có

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Chọn đáp án B.

Bài 10: Môđun của số phức z = -3 + 4i là

A. 5   

B. -3   

C. 4   

D. 7

Ta có: z = -3 + 4i

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 11: Hai số phức z1 = x - 2i, z22 + yi (x, y ∈ R) là liên hợp của nhau khi

A. x = 2, y = -2    

B. x = -2, y = -2    

C. x = 2, y = 2    

D. x = -2, y = 2

Ta có z1 = x + 2i. Do đó, hai số phức đã cho gọi là liên hợp của nhau khi và chỉ khi

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vậy x= 2, y = 2. Chọn đáp án C.

Bài 12: Tập hợp các điểm biểu diễn số phức z thòa mãn |z| = |1 + i| là

A. Hai điểm    

B. Hai đường thẳng

C. Đường tròn bán kính R=2    

D. Đường tròn bán kính R= √2 .

Ta có |1 + i| = √(1 + 1) = √2. Gọi M là điểm biểu diễn của z ta có |z| = OM.

Do đó: |z| = |1 + i| ⇔ OM = √2

Vậy tập hợp các điểm M biểu diễn số phức z là đường tròn tâm O, bán kính R= √2 .

Chọn đáp án D.

Bài 13: Phần thực của số phức z = -i là

A. -1    

B. 1   

C. 0    

D. -i

Ta có: z = -i = 0 - i nên phần thực của số phức z = -i là 0

Bài 14: Phần ảo của số phức z = -1 là

A. -i    

B. 1    

C. -1    

D. 0

Ta có: z= -1 = -1 + 0.i nên phần ảo của số phức z = -1 là 0

Bài 15: Số phức liên hợp của số phức z = 1 + i là

A. 1 – i    

B. -1 – i    

C. -1+ i   

D. 1 + i

Số phức liên hợp của số phức z = 1 + i là z = 1 - i

Bài 16: Cho z = 2i -1. Phần thực và phần ảo của z là

A. 2 và 1    

B. -1 và -2    

C. 1 và 2i   

D. -1 và -2i

Ta có z = 2i - 1 = -1 + 2i ⇔ z = -1 - 2i. Vậy phần thực của z là -1 và phần ảo của z là -2.

Bài viết liên quan

437
  Tải tài liệu