Top 50 Câu trắc nghiệm Toán học 12 Giải tích Bài 7 (có đáp án)
Bộ câu hỏi trắc nghiệm Toán học lớp 12 có đáp án, chọn lọc năm 2021 – 2022 mới nhất gồm các câu hỏi trắc nghiệm đầy đủ các mức độ nhận biết, thông hiểu, vận dụng, vận dung cao. Hy vọng với tài liệu trắc nghiệm Toán học lớp 12 sẽ giúp học sinh củng cố kiến thức, ôn tập và đạt điểm cao trong các bài thi trắc nghiệm môn Toán học 12
Bài 1: Tìm đạo hàm của hàm số
Viết lại hàm số dưới dạng lũy thừa y = (x2 + x + 1)-1/3 .
Sử dụng công thức đạo hàm hàm hợp ta có
Chọn đáp án B.
Bài 2: Tìm giá trị lớn nhất và nhỏ nhất của hàm số
A. max y = 2√2 , min y = ∜2 .
B.max y=2, min y=0.
C. max y = 2√2 , min y=0
D.max y=2, min y= ∜2 .
Tập xác định D = [-1;1].
Chọn đáp án D
Bài 3: Hàm số nào sau đây đồng biến trên (0; +∞) ?
Hàm số y = xα đồng biến trên (0; +∞) khi và chỉ khi α > 0 .
Hàm số
nên hàm số đồng biến trên (0; +∞).
Chọn C.
Bài 4: Khẳng định nào sau đây là đúng?
Viết lại sao cho hai vế của mỗi bất đẳng thức đều là lũy thừa cùng số mũ. Lưu ý, từ tính đơn điệu của hàm số lũy thừa y = xα , ta có
• Nếu α > 0 thì aα < bα ⇔ a < b
• Nếu α < 0 thì a < b ⇒ aα > bα
Suy ra, D đúng.
Chọn D
Bài 5: Số nào sau đây là lớn hơn 1?
Lưu ý với
Do đó, trong các số đã cho thì (0,4)-0,3 > 1
Chọn B.
Bài 6: Sắp xếp các số theo thứ tự tăng dần:
A. d,c,a,b.
B.d,c,b,a.
C. c,d,b,a.
D.c,a,b,d.
Bài 7: Tìm đạo hàm của hàm số
Bài 8: Cho α là một số thực và hàm số đồng biến trên (0; +∞). Khẳng định nào sau đây là đúng
A. α < 1
B. 0 < α < 1/2
C. 1/2 < α < 1
D. α > 1
Hàm số đồng biến khi và chỉ khi
Chọn đáp án B
Bài 9: Sắp xếp các số sau theo thứ tự tăng dần:
A. b,c,d,a
B. a,b,c,d
C.c,d,a,b.
D. d,b,c,a.
Viết lại các số dưới dạng cùng căn bậc 6:
Do 12 < 18 < 24 < 54 nên d < b < c < a các số theo thứ tự tăng dần là d,b,c,a.
Chọn đáp án D.
Bài 10: Tìm các điểm cực trị của hàm số
A. x=4 và x = 8/7 .
B. x=4.
C. x=2.
D. x=2 và x = 4/9 .
Ta thấy y’ đổi dấu khi đi qua 2 điểm x=4 và x = 8/7 nên đây là 2 điểm cực trị của các hàm số đã cho.
Chọn đáp án A.
Bài 11: Tìm đạo hàm của hàm số
Viết lại hàm số dưới dạng lũy thừa
Đáp án A.
Bài 12: Đồ thị hàm số y = x1/4 cắt đường thẳng y=2x tại một điểm nằm bên phải trục tung. Tìm tọa độ điểm này.
Phương trình hoành độ giao điểm
Chọn đáp án D.
Bài 13: Đường thẳng x = α ( α là số thực dương) cắt đồ thị các hàm số
lần lượt tại hai điểm A và B. Biết rằng tung độ điểm A bé hơn tung độ điểm B. Khẳng định nào sau đây là đúng?
A. 0 < α < 1
B. α > 1
C. 1/5 < α < 4
D. 1/4 < α < 5
Từ giả thiết suy ra f(α) < g(α)
Chọn đáp án A.
Nhận xét. Ở đây ta sử dụng tính chất:
Nếu a > 1 thì aα > aβ <=> α > β ;
Nếu 0 < a < 1 thì aα > aβ <=> α < β .
Học sinh có thể không áp dụng tính chất trên mà giải tiếp:
Bài 14: Cho hàm số
Khẳng định nào sau đây là đúng?
A. Hàm số nghịch biến trên (0;2).
B. Hàm số nghịch biến trên khoảng (5; +∞) .
C. Hàm số đồng biến trên (2; +∞) .
D. Hàm số không có điểm cực trị nào.
Ta có
Ta thấy y'(x) < 0 <=> x > 2 nên hàm số nghịch biến trên (2; +∞) , và do đó, hàm số nghịch biến trên (5; +∞) .
Chọn đáp án B.
Bài 15: Tìm các điểm cực trị của hàm số
y’ đổi dấu khi qua điểm x = 4/9 nên hàm số có một điểm cực trị là x = 4/9 .
Chọn đáp án C.
Bài 16: Số nào lớn nhất trong các số được liệt kê trong bốn phương án A,B,C,D dưới đây?
Viết lại các số dưới dạng cùng căn bậc 4:
Từ đó ta thấy 5√2 là lớn nhất
Bài 17: Tìm các điểm cực trị của hàm số
A. x=2.
B. 3/2
C. x=6.
D. x=4.
y’ đổi dấu khi đi qua điểm x = 3/2 nên hàm số có một điểm cực trị là x = 3/2
Bài 18: Tìm các giá trị lớn nhất và nhỏ nhất của hàm số
Tập xác định D = [0; 1]
Ta có:
y(0) = y(1) = 1; y(1/2) = ∜8. Từ đó max y = y(1/2) = ∜8, min y = y(0) = 1
Bài 19: Tìm các giá trị lớn nhất và nhỏ nhất của hàm số y = x2/3(20 - x) trên đoạn [1; 10]
y' = 0 <=> x = 8
Ta có: y(1) = 19, y(8) = 48, y(10) = 105/3 ≈ 46,6 > 19
Từ đó:
Bài 20: Với là một số thực dương và hàm số
nghịch biến trên khoảng (0; +∞). Khẳng định nào sau đây là đúng?
Hàm số
nghịch biến trên (0; +∞) nên ∜α - 2α < 0
Bài 21: Tìm các điểm cực trị của hàm số
A. x=1.
B.x=2.
C. x=1 va x=-2
D. x=2 và x=-1.
y'= 0 <=> x2 + x - 2 = 0 <=> x = -2 (loại) hoặc x = 1
y' đổi dấu khi đi qua điểm x = 1 nên hàm số có một điểm cực trị là x = 1
Bài 22: Tìm đạo hàm của hàm số
Viết lại
Bài 23: Số nào lớn nhất trong các số được liệt kê trong bốn phương án A,B,C,D dưới đây?
Viết lại các số
Từ đó ta thấy số lớn nhất là
Bài 24: Cho a và b là hai số dương. Tìm giá trị lớn nhất của hàm số y = xa(1 - x)b trên [0;1].
Bài 25: Tìm đạo hàm của hàm số
Viết lại:
Bài 26: Viết phương trình tiếp tuyến của đồ thị hàm số y = x1/5 tại điểm có tung độ bằng 2.
Bài 27: Tính tổng các nghiệm của phương trình
A. 7. B. 25. C. 73. D.337.
Tổng hai nghiệm : 81 + 256 = 337
Bài 28: Tìm tọa độ giao điểm của đồ thị
Phương trình hoành độ giao điểm
Bài 29: Cho 2 hàm số f(x) = x2 và g(x) = x1/2 . Biết rằng α > 0, f(α) < g(α). Khẳng định nào sau đây là đúng?
A. 0 < α < 1/2
B. 0 < α < 1
C. 1/2 < α < 2
D. α > 1
Bài 30: Tìm các khoảng đồng biến của hàm số y = √x - ∜x, x > 0
y' = 0 <=> 2∜x - 1 > 0 <=> x > 1/16 => Khoảng đồng biến của hàm số là (1/16; +∞)
Bài viết liên quan
- Top 50 Câu trắc nghiệm Toán học 12 Giải tích Ôn tập chương 1 (có đáp án)
- Top 50 Câu trắc nghiệm Toán học 12 Giải tích Bài 6 (có đáp án)
- Top 50 Câu trắc nghiệm Toán học 12 Giải tích Bài 8 (có đáp án)
- Top 50 Câu trắc nghiệm Toán học 12 Giải tích Bài 9 (có đáp án)
- Top 50 Câu trắc nghiệm Toán học 12 Giải tích Bài 10 (có đáp án)