Toán lớp 9 Bài 6 : Cung chứa góc
Lý thuyết tổng hợp Toán lớp 9 Bài 6 : Cung chứa góc chọn lọc năm 2021 – 2022 mới nhất gồm tóm tắt lý thuyết và hơn 500 bài tập ôn luyện Toán 9. Hy vọng bộ tổng hợp lý thuyết Toán lớp 9 sẽ giúp học sinh củng cố kiến thức, ôn tập và đạt điểm cao trong các bài thi trắc nghiệm môn Toán học 9.
Bài 6 : Cung chứa góc
1. Quỹ tích cung chứa góc
Với đoạn thẳng AB và góc α (0 < α < 180°) cho trước thì quỹ tích các điểm M thoả mãn ∠AMB = a là hai cung chứa góc α dựng trên đoạn AB.
Chú ý:
+ Hai cung chứa góc α nói trên là hai cung tròn đối xứng nhau qua AB.
+ Hai điểm A, B được coi là thuộc quỹ tích.
+ Đặc biệt: Quỹ tích các điểm M nhìn đoạn thẳng AB cho trước dưới một góc vuông là đường tròn đường kính AB.
2. Cách vẽ cung chứa góc α
– Vẽ đường trung trực d của đoạn thẳng AB.
– Vẽ tia Ax tạo với AB một góc α.
– Vẽ đường thẳng Ay vuông góc với Ax. Gọi O là giao điểm của Ay với d.
– Vẽ cung AmB, tâm O, bán kính OA sao cho cung này nằm ở nửa mặt phẳng bờ AB không chứa tia Ax.
- được vẽ như trên là một cung chứa góc α.
3. Cách giải bài toán quỹ tích
Muốn chứng minh quỹ tích (tập hợp) các điểm M thoả mãn tính chất T là một hình H nào đó, ta phải chứng minh hai phần:
– Phần thuận: Mọi điểm có tính chất T đều thuộc hình H.
– Phần đảo: Mọi điểm thuộc hình H đều có tính chất T.
– Kết luận: Quỹ tích các điểm M có tính chất T là hình H.
4. Ví dụ
Ví dụ 1: Từ điểm M nằm bên ngoài đường tròn (O), kẻ cát tuyến MAB đi qua O và các tiếp tuyến MC, MD. Gọi K là giao điểm của AC và BD. Chứng mình rằng: 4 điểm B, C, M, K thuộc cùng một đường tròn.
Hướng dẫn:
Ta đã biết MO là đường trung trực của CD nên AB là đường trung trực của CD
Suy ra
Mặt khác (góc tạo bởi tia tiếp tuyến và dây cung và góc nội tiếp cùng chắn cung CA)
Do đó:
Tứ giác MCBK có nên M, C, B, K cùng thuộc một đường tròn
Ví dụ 2: Cho hình bình hành ABCD (AB // CD) , O là giao điểm của hai đường chéo. Trên tia OA lấy điểm M sao cho OM = OB. Trên tia OB lấy điểm N sao cho ON = OA. Chứng minh rằng: 4 điểm D, M, N, C cùng thuộc một đường tròn.
Hướng dẫn:
B. Bài tập tự luận
Câu 1: Cho cung AB cố định tạo bởi các bán kính OA, OB vuông góc với nhau, điểm I chuyển động trên cung AB. Trên tia OI lấy điểm M sao cho OM bằng tổng các khoảng cách từ I đến OA và OB. Tìm quỹ tích các điểm M.
Câu 2: Cho nửa đường tròn (O) đường kính AC. C là một điểm trên nửa đường tròn. Trên bán kính OC lấy điểm D sao cho OD bằng khoảng cách từ C đến AB.