Toán lớp 9 Bài 3 : Liên hệ giữa dây và khoảng cách từ tâm đến dây

Lý thuyết tổng hợp Toán lớp 9 Bài 3 : Liên hệ giữa dây và khoảng cách từ tâm đến dây  chọn lọc năm 2021 – 2022 mới nhất gồm tóm tắt lý thuyết và hơn 500 bài tập ôn luyện Toán 9. Hy vọng bộ tổng hợp lý thuyết  Toán lớp 9 sẽ giúp học sinh củng cố kiến thức, ôn tập và đạt điểm cao trong các bài thi trắc nghiệm môn Toán học 9.

721
  Tải tài liệu

 Bài 3 : Liên hệ giữa dây và khoảng cách từ tâm đến dây

1. Định lý 1

Lý thuyết Liên hệ giữa dây và khoảng cách từ tâm đến dây - Lý thuyết Toán lớp 9 đầy đủ nhất

Trong một đường tròn:

a) Hai dây bằng nhau thì cách đều tâm.

b) Hai dây cách đều tâm thì bằng nhau.

Áp dụng vào hình vẽ như sau:

Ta có OH ⊥ AB; OK ⊥ CD.

AB = CD ⇔ OH = OK

2. Định lý 2

Lý thuyết Liên hệ giữa dây và khoảng cách từ tâm đến dây - Lý thuyết Toán lớp 9 đầy đủ nhất

Trong hai dây của một đường tròn:

a) Dây nào lớn hơn thì dây đó gần tâm hơn.

b) Dây nào gần tâm hơn thì dây đó lớn hơn.

Áp dụng vào hình vẽ như sau:

Ta có: OA = OB = OC = OD = R

OH < OK ⇒ AB > CD

Do

Lý thuyết Liên hệ giữa dây và khoảng cách từ tâm đến dây - Lý thuyết Toán lớp 9 đầy đủ nhất

3. Ví dụ cụ thể

Câu 1: Cho đường tròn tâm O có bán kính là 5cm, dây AB dài 8cm.

a) Tính khoảng cách từ tâm O đến dây AB.

b) Gọi I là điểm thuộc dây AB sao cho AI = 1cm. Kẻ dây CD qua I vuông góc với AB. Chứng minh rằng CD = AB

Hướng dẫn:

Lý thuyết Liên hệ giữa dây và khoảng cách từ tâm đến dây - Lý thuyết Toán lớp 9 đầy đủ nhất

a) Gọi H là trung điểm của AB.

AH = HB = AB/2 = 4 cm

⇒ OH ⊥ AB.

Khi đó:

Lý thuyết Liên hệ giữa dây và khoảng cách từ tâm đến dây - Lý thuyết Toán lớp 9 đầy đủ nhất

b)Điểm I nằm giữa A và H nên: AI + IH = AH

suy ra: IH = AH – AI = 4 - 1= 3 cm

Từ O kẻ OK ⊥ CD.

Ta có OKIH là hình chữ nhật mà có OH = IH = 3cm ⇒ OKIH là hình vuông

Nhận xét: Khoảng cách từ O đến AB bằng khoảng cách từ O đến CD nên

Giải thích:

Lý thuyết Liên hệ giữa dây và khoảng cách từ tâm đến dây - Lý thuyết Toán lớp 9 đầy đủ nhất

B. Bài tập tự luận

Câu 1: Cho đường tròn tâm O bán kính là 5, dây AB = 8

a) Tính khoảng cách từ O đến AB

b) Gọi I là điểm thuộc dây AB sao cho AI = 1 , kẻ dây CD đi qua I vuông góc với AB. Chứng minh rằng AB = CD

Câu 2: Cho đường tròn (O; R) . Lấy các điểm A và B trên đường tròn. Trên bán kính OA, OB lấy các điểm M, N sao cho OM = ON . Vẽ dây CD đi qua MN; M giữa C và N

a) Chứng minh: CM = DN

b) Giả sử Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án. Tính OM theo R sao cho CM = MN = ND

Bài viết liên quan

721
  Tải tài liệu