Toán lớp 9 Bài 7 : Vị trí tương đối của hai đường tròn (tiếp theo)
Lý thuyết tổng hợp Toán lớp 9 Bài 7 : Vị trí tương đối của hai đường tròn (tiếp theo) chọn lọc năm 2021 – 2022 mới nhất gồm tóm tắt lý thuyết và hơn 500 bài tập ôn luyện Toán 9. Hy vọng bộ tổng hợp lý thuyết Toán lớp 9 sẽ giúp học sinh củng cố kiến thức, ôn tập và đạt điểm cao trong các bài thi trắc nghiệm môn Toán học 9.
Bài 7 : Vị trí tương đối của hai đường tròn (tiếp theo)
1. Ba vị trí tương đối của hai đường tròn.
a) Hai đường tròn cắt nhau.
Hai đường tròn có hai điểm chung được gọi là hai đường tròn cắt nhau.
+ Hai điểm A, B là hai giao điểm.
+ Đoạn thẳng AB là dây chung.
+ Đặt O1A = R; O2A = r khi đó: |R - r| < O1O2 < R + r
+ Đường thẳng O1O2 là đường nối tâm, đoạn thẳng O1O2 là đoạn nối tâm.
+ Tính chất đường nối tâm: Đường nối tâm là đường trung trực của dây chung
b) Hai đường tròn tiếp xúc nhau.
Hai đường tròn chỉ có một điểm chung được gọi là hai đường tròn tiếp xúc.
+ Điểm A gọi là tiếp điểm.
+ Có hai trường hợp tiếp xúc của hai đường tròn:
⋅ Tiếp xúc ngoài tại A: O1O2 = R + r
⋅ Tiếp xúc trong tại A: O1O2 = |R - r|
c) Hai đường tròn không giao nhau
Hai đường tròn không có điểm chung nào được gọi là hai đường tròn không giao nhau.
+ Hai đường tròn ngoài nhau: O1O2 > R + r
+ Hai đường tròn đựng nhau: O1O2 < |R - r|
+ Đặc biệt, khi (O1) và (O2) đồng tâm: O1O2 = 0
2. Định lý
+ Nếu hai đường tròn cắt nhau thì hai giao điểm đối xứng nhau qua đường nối tâm, tức là đường nối tâm là đường trung trực của dây cung.
+ Nếu hai đường tròn tiếp xúc nhau thì tiếp điểm nằm trên đường nối tâm.
3. Tiếp tuyến chung của hai đường tròn
+ Tiếp tuyến chung của hai đường tròn là đường thẳng tiếp xúc với cả hai đường tròn đó.
+ Tiếp tuyến chung ngoài không cắt đường nối tâm.
+ Tiếp tuyến chung trong cắt đường nối tâm.
4. Ví dụ cụ thể
Câu 1: Cho đường tròn tâm O bán kính OA và đường tròn đường kính OA. Xác định tính tương đối của hai đường tròn
Hướng dẫn:
Gọi đường tròn (O') là đường tròn đường kính OA.
Ta có:
⇒ (O) và (O') tiếp xúc trong.
B. Bài tập tự luận
Câu 1: Cho hai đường tròn (O; 20) và (O'; 15) cắt nhau tại A và B. Tính đoạn thẳng nối OO' biết rằng AB = 24
Câu 2: Cho hai đường tròn (O; R) và (O'; r) cắt nhau tại hai điểm A và B. Vẽ đường kính AOC và đường kính AO'D
a) Chứng minh ba điểm C, B, D thẳng hàng
b) Qua A vẽ cát tuyến cắt (O) và (O') lần lượt tại M và N. CMR: MN ≤ CD