Em hãy viết hai đa thức tùy ý A(x) và B(x). Sau đó tính C(x) = A(x) − B(x
Lời giải Bài 7.17 trang 28 SBT Toán 7 sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 7.
Bài 7.17 trang 28 SBT Toán 7 Tập 2: Em hãy viết hai đa thức tùy ý A(x) và B(x). Sau đó tính C(x) = A(x) − B(x) và C’(x) = B(x) − A(x), rồi so sánh và nêu nhận xét về bậc, các hệ số của C(x) và C’(x).
Lời giải:
Cho đa thức A(x) = x3 − 2x2 + 5x + 1 và B(x) = 3x3 − x − 5.
Ta có: C(x) = A(x) − B(x)
= (x3 − 2x2 + 5x + 1) − (3x3 − x − 5)
= x3 − 2x2 + 5x + 1 − 3x3 + x + 5
= (x3 − 3x3) − 2x2 + (5x + x) + (1 + 5)
= − 2x3 − 2x2 + 6x + 6
Ta có C’(x) = B(x) − A(x)
= (3x3 − x − 5) − (x3 − 2x2 + 5x + 1)
= 3x3 − x − 5 − x3 + 2x2 − 5x − 1
= 3x3 − x3 + 2x2 + (−x − 5x) + (−5 − 1)
= 2x3 + 2x2 − 6x − 6
Từ hai kết quả trên, ta thấy các hệ số của hai hạng tử cùng bậc trong hai đa thức C(x) và C’(x) là hai số đối nhau.
Xem thêm các bài giải sách bài tập Toán 7 bộ sách Kết nối tri thức hay, chi tiết khác:
Bài 7.16 trang 28 SBT Toán 7 Tập 2: Cho đa thức H(x) = x4 − 3x3 − x +1 . Tìm đa thức P(x) và Q(x) sao cho: a) H(x) + P(x) = x5 − 2x2 + 2...
Bài 7.18 trang 28 SBT Toán 7 Tập 2: Cho các đa thức: A(x) = 2x3 − 2x2 + x − 4 B(x) = 3x3 − 2x + 3 C(x) = −x3 + 1...
Bài 7.19 trang 28 SBT Toán 7 Tập 2: Gọi S(x) là tổng của hai đa thức A(x) và B(x). Biết rằng x = a là một nghiệm của đa thức A(x). Chứng minh rằng: a) Nếu x = a là một nghiệm của B(x) thì a cũng là một nghiệm của S(x)...
Bài viết liên quan
- Giải Sách bài tập Toán 7 Kết nối tri thức Bài 25: Đa thức một biến
- Giải Sách bài tập Toán 7 Kết nối tri thức Bài 26: Phép cộng và phép trừ đa thức một biến
- Giải Sách bài tập Toán 7 Kết nối tri thức Bài 27: Phép nhân đa thức một biến
- Giải Sách bài tập Toán 7 Kết nối tri thức Bài 28: Phép chia đa thức một biến
- Giải Sách bài tập Toán 7 Kết nối tri thức Ôn tập chương 7