Cho các đa thức: A(x) = 2x^3 − 2x^2 + x − 4
Lời giải Bài 7.18 trang 28 SBT Toán 7 sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 7.
Bài 7.18 trang 28 SBT Toán 7 Tập 2: Cho các đa thức:
A(x) = 2x3 − 2x2 + x − 4
B(x) = 3x3 − 2x + 3
C(x) = −x3 + 1
Hãy tính:
a) A(x) + B(x) + C(x);
b) A(x) − B(x) − C(x).
Lời giải:
Nhận xét rằng: A + B + C = A + (B + C) và A – B – C = A – (B + C).
Do đó để cho gọn, trước hết hãy tính B + C.
Ta có B(x) + C(x)
= (3x3 − 2x + 3) + (−x3 + 1)
= 3x3 − 2x + 3 − x3 + 1
= (3x3 − x3) − 2x + (3 + 1)
= 2x3 − 2x + 4.
a) Ta có A(x) + B(x) + C(x)
= (2x3 − 2x2 + x − 4) + (2x3 − 2x + 4)
= 2x3 − 2x2 + x − 4 + 2x3 − 2x + 4
= (2x3 + 2x3) − 2x2 + (x − 2x) + (−4 + 4)
= 4x3 − 2x2 − x
b) Ta có A(x) − B(x) − C(x)
= A(x) − [B(x) + C(x)]
= (2x3 − 2x2 + x − 4) − (2x3 − 2x + 4)
= 2x3 − 2x2 + x − 4 − 2x3 + 2x − 4
= (2x3 − 2x3) − 2x2 + (x + 2x) + (−4 − 4)
= −2x2 + 3x − 8
Xem thêm các bài giải sách bài tập Toán 7 bộ sách Kết nối tri thức hay, chi tiết khác:
Bài 7.16 trang 28 SBT Toán 7 Tập 2: Cho đa thức H(x) = x4 − 3x3 − x +1 . Tìm đa thức P(x) và Q(x) sao cho: a) H(x) + P(x) = x5 − 2x2 + 2...
Bài 7.18 trang 28 SBT Toán 7 Tập 2: Cho các đa thức: A(x) = 2x3 − 2x2 + x − 4 B(x) = 3x3 − 2x + 3 C(x) = −x3 + 1...
Bài 7.19 trang 28 SBT Toán 7 Tập 2: Gọi S(x) là tổng của hai đa thức A(x) và B(x). Biết rằng x = a là một nghiệm của đa thức A(x). Chứng minh rằng: a) Nếu x = a là một nghiệm của B(x) thì a cũng là một nghiệm của S(x)...
Bài viết liên quan
- Giải Sách bài tập Toán 7 Kết nối tri thức Bài 25: Đa thức một biến
- Giải Sách bài tập Toán 7 Kết nối tri thức Bài 26: Phép cộng và phép trừ đa thức một biến
- Giải Sách bài tập Toán 7 Kết nối tri thức Bài 27: Phép nhân đa thức một biến
- Giải Sách bài tập Toán 7 Kết nối tri thức Bài 28: Phép chia đa thức một biến
- Giải Sách bài tập Toán 7 Kết nối tri thức Ôn tập chương 7