Giải Sách bài tập Toán 7 Kết nối tri thức Ôn tập chương 7

Với giải sách bài tập Toán 7 Ôn tập chương 7 sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 7 Ôn tập chương 7.

448
  Tải tài liệu

Giải sách bài tập Toán lớp 7 Ôn tập chương 7  - Kết nối tri thức

Giải SBT Toán 7 trang 35 Tập 2

Câu 1 trang 35 SBT Toán 7 tập 2: Biểu thức nào sau đây không là đa thức một biến?

A. square root of 3 ;

B. – x;

C. x + fraction numerator negative 1 over denominator x end fraction ;

D.  fraction numerator x over denominator square root of 2 end fraction − 1.

Lời giải:

Đáp án đúng là: C.

x +  fraction numerator negative 1 over denominator x end fraction không phải đa thức một biến vì fraction numerator negative 1 over denominator x end fraction  không phải là đơn thức theo biến x.

Câu 2 trang 35 SBT Toán 7 tập 2: Cho đa thức G(x) = 4x3 + 2x2 − 5x. Hệ số cao nhất và hệ số tự do của G(x) lần lượt là:

A. 4 và 0;

B. 0 và 4;

C. 4 và – 5;

D. – 5 và 4.

Lời giải:

Đáp án đúng là : A.

Vì đa thức G(x) = 4x3 + 2x2 − 5x có hạng tử có bậc cao nhất là 4x3, bậc 3, nên G(x) có hệ số cao nhất là 4 và hệ số tự do là 0.

Câu 3 trang 35 SBT Toán 7 tập 2: Cho hai đa thức f(x) và g(x) khác đa thức không sao cho tổng f(x) + g(x) khác đa thức không. Khi nào thì bậc của f(x) + g(x) chắc chắn bằng bậc của f(x)?

A. f(x) và g(x) có cùng bậc;

B. f(x) có bậc lớn hơn bậc của g(x);

C. g(x) có bậc lớn hơn bậc của f(x);

D. Không bao giờ.

Lời giải:

Đáp án đúng là : B.

Trong mọi trường hợp khi f(x) có bậc lớn hơn bậc của g(x) thì bậc của f(x) + g(x) chắc chắn bằng bậc của f(x).

Câu 4 trang 35 SBT Toán 7 tập 2: Cho đa thức P(x) = x2 + 5x − 6. Khi đó:

A. P(x) chỉ có một nghiệm là x = 1;

B. P(x) không có nghiệm;

C. P(x) chỉ có một nghiệm là x = −6;

D. x = 1 và x =  −6 là hai nghiệm của P(x).

Lời giải:

Đáp án đúng là: D.

Thay x = 1 và x = −6 vào P(x) ta có:

P(1) = 12 + 5.1 −6 = 1 + 5 −6 = 0

P(−6) = (−6)2 + 5.(– 6) − 6 = 36 − 30 − 6 = 0

Do đó x = 1 và x =  −6 là hai nghiệm của P(x).

Câu 5 trang 35 SBT Toán 7 tập 2: Phép chia đa thức 2 x to the power of 5 minus 3 x to the power of 4 plus x cubed minus 6 x squared  cho đa thức 5 x to the power of 7 minus 2 n end exponent ( n element of ℕ và 0 ≤ n ≤ 3 ) là phép chia hết nếu

A. n = 0;

B. n = 1;

C. n = 2;

D. n = 3.

Lời giải:

Đáp án đúng là : D.

Đa thức đã cho chia hết cho 5 x to the power of 7 minus 2 n end exponent nếu từng hạng tử của nó chia hết cho 5 x to the power of 7 minus 2 n end exponent , nói riêng thì bậc của 5 x to the power of 7 minus 2 n end exponent nhỏ hơn hoặc bằng bậc nhỏ nhất của đa thức.

Khi đó 7 − 2n ≤ 2 n 5 over 2 . Chỉ có n = 3 thỏa yêu cầu đề bài.

Bài 7.34 trang 35 SBT Toán 7 Tập 2: Thu gọn và sắp xếp các đa thức sau theo lũy thừa giảm của biến. Tìm bậc, hệ số cao nhất và hệ số tự do của mỗi đa thức đó.

a) x5 + 7x2 − x − 2x5 + 3 − 5x2;

b) 4x3 − 5x2 + x − 4x3 + 3x2 − 2x + 6.

Lời giải:

a) x5 + 7x2 − x − 2x5 + 3 − 5x2

= (x5 − 2x5) + (7x2 − 5x2) − x + 3

= −x5 + 2x2 − x + 3

Vì đa thức trên có hạng tử có bậc cao nhất là −x5 nên đa thức có bậc 5, hệ số cao nhất là −1 và hệ số tự do là 3.

b) 4x3 − 5x2 + x − 4x3 + 3x2 − 2x + 6

= (4x3 − 4x3) + (−5x2 + 3x2) + (x − 2x) + 6

= −2x2 − x + 6

Vì đa thức trên có hạng tử có bậc cao nhất là −2x2 nên đa thức có bậc 2, hệ số cao nhất là −2, hệ số tự do là 6.

Giải SBT Toán 7 trang 36 Tập 2

Bài 7.35 trang 36 SBT Toán 7 Tập 2: Cho hai đa thức f(x) = 4x4 − 5x3 + 3x + 2 và g(x) = −4x4 + 5x3 + 7. Trong các số −4; −3; 0 và 1, số nào là nghiệm của đa thức f(x) + g(x)?

Lời giải:

Ta có: f(x) + g(x)

= (4x4 − 5x3 + 3x + 2) + (−4x4 + 5x3 + 7)

= 4x4 − 5x3 + 3x + 2 −4x4 + 5x3 + 7

= (4x4 −4x4) + (−5x3 + 5x3) + 3x + (2 + 7)

= 3x + 9.

Để tìm nghiệm của đa thức f(x) + g(x) thì đa thức phải bằng 0.

Suy ra 3x + 9 = 0

x = (−9) : 3 = −3

Vậy nghiệm của đa thức f(x) + g(x) là x = −3

Bài 7.36 trang 36 SBT Toán 7 Tập 2: Cho hai đa thức f(x) = −x5 + 3x2 + 4x + 8  và g(x) = −x5 − 3x2 + 4x + 2. Chứng minh rằng đa thức f(x) – g(x) không có nghiệm.

Lời giải:

Ta có f(x) – g(x)

= (−x5 + 3x2 + 4x + 8) – (−x5 − 3x2 + 4x + 2)

= −x5 + 3x2 + 4x + 8 + x5 + 3x2 – 4x – 2

= (−x5 + x5) + (3x2 + 3x2) + (4x – 4x) + (8 – 2)

= 6x2 + 6

f(x) – g(x) = 6x2 + 6 ≥ 6 với mọi x nên f(x) – g(x) không có nghiệm.

Bài 7.37 trang 36 SBT Toán 7 Tập 2: Cho hai đa thức sau:

P(x) = 3x5 – 2x4 + 7x2 + 3x – 10

Q(x) = –3x5 – x3 – 7x2 + 2x + 10

a) Xác định bậc, hệ số cao nhất và hệ số tự do của các đa thức

S(x) = P(x) + Q(x) và D(x) = P(x) – Q(x)

b) Trong tập hợp {–1; 0; 1}, tìm những số là nghiệm của một trong hai đa thức S(x) và D(x).

Lời giải:

a) S(x) = P(x) + Q(x)

= (3x5 – 2x4 + 7x2 + 3x – 10) + (–3x5 – x3 – 7x2 + 2x + 10)

= 3x5 – 2x4 + 7x2 + 3x – 10 – 3x5 – x3 – 7x2 + 2x + 10

= (3x5 – 3x5) – 2x4 – x3 + (7x2 – 7x2) + (3x + 2x) + (–10 + 10)

= –2x4 – x3 + 5x

S(x) = –2x4 – x3 + 5x là đa thức bậc 4 với hệ số cao nhất là –2 và hệ số tự do là 0.

D(x) = P(x) – Q(x)

= (3x5 – 2x4 + 7x2 + 3x – 10) − (–3x5 – x3 – 7x2 + 2x + 10)

= 3x5 – 2x4 + 7x2 + 3x – 10 + 3x5 + x3 + 7x2 – 2x – 10

= (3x5 + 3x5 ) – 2x4 + x3 + (7x2 + 7x2)+ (3x – 2x) + (–10 – 10)

= 6x5 – 2x4 + x3  + 14x2 + x – 20

D(x) = 6x5 – 2x4 + x3  + 14x2 + x – 20 là đa thức bậc 5 với hệ số cao nhất là 6 và hệ số tự do là – 20

b) Xét đa thức S(x):

+) Thay x = – 1 vào đa thức S(x) ta được:

S(0) = –2.(– 1)4 – (– 1)3 + 5.(– 1) = – 6 0

Do đó x = – 1 không là nghiệm của đa thức S(x).

+) Thay x = 0 vào đa thức S(x) ta được:

S(0) = –2.04 – 03 + 5.0 = 0

Do đó x = 0 là nghiệm của đa thức S(x).

+) Thay x = 1 vào đa thức S(x) ta được:

S(0) = –2.14 – 13 + 5.1 = 2 0

Do đó x = 1 không là nghiệm của đa thức S(x).

Xét đa thức D(x):

+) Thay x = – 1 vào đa thức D(x) ta được:

D(1) = 6.(– 1)5 – 2.(– 1)4 + (– 1)3  + 14.(– 1)2 + (– 1) – 20 = – 6 – 2 – 1 + 14 – 1 – 20 = – 16 0.

Do đó x = – 1 không là nghiệm của đa thức D(x).

+) Thay x = 0 vào đa thức D(x) ta được:

D(1) = 6.05 – 2.04 + 03  + 14.02 + 0 – 20 = – 20 0

Do đó x = 0 không là nghiệm của đa thức D(x).

+) Thay x = 1 vào đa thức D(x) ta được:

D(1) = 6.15 – 2.14 + 13  + 14.12 + 1 – 20 = 6 – 2 + 1 + 14 + 1 – 20 = 0

Do đó x = 1 là nghiệm của đa thức D(x).

Vậy x = 0 là nghiệm của đa thức S(x) và x = 1 là nghiệm của đa thức D(x).

Bài 7.38 trang 36 SBT Toán 7 Tập 2: Biết rằng đa thức f(x) = x4 + px3 – 2x2 + 1  có hai nghiệm (khác 0) là hai số đối nhau. Chứng minh rằng p = 0.

Lời giải:

Gọi hai nghiệm đối nhau của f(x) là a và – a (a ≠ 0). Khi đó ta có:

f(a) = a4 + pa3 – 2a2 + 1 = 0 = f(– a) = (– a)4 + p(–a)3 – 2(–a)2 + 1

Suy ra:

a4 + pa3 – 2a2 + 1 = a4 – pa3 – 2a2 + 1

Thu gọn ta được pa3 = –pa3, suy ra 2pa3 = 0 . Do a ≠ 0 nên từ đẳng thức này suy ra p = 0.

Bài 7.39 trang 36 SBT Toán 7 Tập 2: Thực hiện các phép tính sau:

a) (5x3 – 2x2 + 4x – 4)(3x2 + x – 1);

b) (9x5 – 6x3 + 18x2 – 35x – 42) : ( 3x3 + 5x + 6);

c) open square brackets open parentheses 6 x cubed minus 5 x squared minus 8 x plus 5 close parentheses minus left parenthesis 4 x squared minus 6 x plus 2 right parenthesis close square brackets : (2x – 3).

Lời giải:

a) (5x3 – 2x2 + 4x – 4)(3x2 + x – 1)

= 3x2(5x3 – 2x2 + 4x – 4) + x(5x3 – 2x2 + 4x – 4) – 1(5x3 – 2x2 + 4x – 4)

= 15x5 – 6x4 + 12x3 – 12x2 + 5x4 – 2x3 + 4x2 – 4x – 5x3 + 2x2 – 4x + 4

= 15x5 + (–6x4 + 5x4) + (12x3 – 2x3 – 5x3) + (–12x2 + 4x2 + 2x2)+ (–4x– 4x) + 4

= 15x5 – x4 + 5x3 – 6x2 – 8x + 4

b) (9x5 – 6x3 + 18x2 – 35x – 42) : ( 3x2 + 5x + 6)

Sách bài tập Toán 7 Ôn tập chương 7  - Kết nối tri thức (ảnh 1)

Vậy phép chia (9x5 – 6x3 + 18x2 – 35x – 42) : ( 3x2 + 5x + 6) có thương là 3x2 − 7 và dư 0.

c) open square brackets open parentheses 6 x cubed minus 5 x squared minus 8 x plus 5 close parentheses minus left parenthesis 4 x squared minus 6 x plus 2 right parenthesis close square brackets : (2x – 3)

Tính (6x3 − 5x2 − 8x + 5) − (4x2 − 6x + 2)

= 6x3 − 5x2 − 8x + 5 − 4x2 + 6x − 2

= 6x3  + (−5x2 − 4x2) + (−8x + 6x) + (5 − 2)

= 6x3  − 9x2 − 2x  + 3

Ta thực hiện tiếp phép chia (6x3  − 9x2 − 2x  + 3) : (2x – 3)

Sách bài tập Toán 7 Ôn tập chương 7  - Kết nối tri thức (ảnh 1)

Vậy phép chia open square brackets open parentheses 6 x cubed minus 5 x squared minus 8 x plus 5 close parentheses minus left parenthesis 4 x squared minus 6 x plus 2 right parenthesis close square brackets : (2x – 3) có thương là 3x2 − 1 và số dư là 0

Bài 7.40 trang 36 SBT Toán 7 Tập 2: Rút gọn các biểu thức sau:

a) A = (x − 1)(x + 2)(x − 3) − (x + 1)(x − 2)(x + 3)

b) B = (x − 1)(x + 1)( x2 + 1)(x4 +1) − x8

Lời giải:

a) A = (x − 1)(x + 2)(x − 3) − (x + 1)(x − 2)(x + 3)

Ta có:

 (x − 1)(x + 2)(x − 3)

= [x(x + 2) − 1(x + 2)](x − 3)

= (x2 + 2x − x − 2)(x − 3)

= (x2 + x − 2)(x − 3)

= x(x2 + x − 2) − 3(x2 + x − 2)

= x3 + x2 − 2x − 3x2 − 3x + 6

= x3 + (x2 − 3x2) +  (−2x − 3x) + 6

= x3 − 2x2 − 5x + 6 (1)

(x + 1)(x − 2)(x + 3)

= [x(x − 2) + 1(x − 2)](x + 3)

= (x2 − 2x + x − 2)(x + 3)

= (x2 − x − 2)(x + 3)

= x(x2 − x − 2) + 3(x2 − x − 2)

= x3 − x2 − 2x + 3x2 − 3x − 6

= x3 + (−x2 + 3x2) +  (−2x − 3x) − 6

= x3 + 2x2 − 5x − 6 (2)

Khi đó: A = (x − 1)(x + 2)(x − 3) − (x + 1)(x − 2)(x + 3) = (1) − (2)

= (x3 − 2x2 − 5x + 6) − (x3 + 2x2 − 5x − 6)

= x3 − 2x2 − 5x + 6 − x3 − 2x2 + 5x + 6

= (x3 − x3) + (−2x2 − 2x2) + (−5x + 5x) + (6 + 6)

= −4x2 + 12.

b) B = (x − 1)(x + 1)( x2 + 1)(x4 +1) − x8

Với M là một biểu thức tùy ý, ta có:

(M − 1)(M + 1) = M2 − M + M − 1 hay (M − 1)(M + 1) = M2 − 1  (1)

Từ đó, ta có:

(x − 1)(x + 1)  (áp dụng (1) với M = x)

(x2 − 1)(x2 + 1) = (x2)2 − 1 = x4 − 1  (áp dụng (1) với M = x2)

(x4 − 1)(x4 + 1) = (x4)2 − 1 = x8 − 1 (áp dụng (1) với M = x4).

Sử dụng các kết quả trên, ta được:

(x − 1)(x + 1)(x2 + 1)(x4 + 1)

= open square brackets left parenthesis x minus 1 right parenthesis left parenthesis x plus 1 right parenthesis close square brackets (x2 +1)(x4 + 1)

= (x2 − 1)(x2 + 1)(x4  + 1)

= open square brackets left parenthesis x squared minus 1 right parenthesis left parenthesis x squared plus 1 right parenthesis close square brackets (x4 + 1)

= (x4 − 1)(x4 + 1)

= x8 − 1.

Vậy B = (x − 1)(x + 1)( x2 + 1)(x4 +1) − x8 = x8 – 1 − x8 = −1.

448
  Tải tài liệu