Trắc nghiệm Toán học 11 Quy tắc đếm có đáp án năm 2021 - 2022
Bộ câu hỏi trắc nghiệm Toán học lớp 11 có đáp án, chọn lọc năm 2021 – 2022 mới nhất gồm các câu hỏi trắc nghiệm đầy đủ các mức độ nhận biết, thông hiểu, vận dụng, vận dung cao. Hy vọng với tài liệu trắc nghiệm Toán học lớp 11 sẽ giúp học sinh củng cố kiến thức, ôn tập và đạt điểm cao trong các bài thi trắc nghiệm môn Toán học 11
Trắc nghiệm Toán học 11 Quy tắc đếm
Bài 1: Một người có 4 cái quần khác nhau, 6 cái áo khác nhau, 3 chiếc cà vạt khác nhau. Để chọn một cái quần hoặc một cái áo hoặc một cái cà vạt thì số cách chọn khác nhau là:
A.13
B. 72
C. 12
D. 30
Nếu chọn một cái quần thì sẽ có 4 cách.
Nếu chọn một cái áo thì sẽ có 6 cách.
Nếu chọn một cái cà vạt thì sẽ có 3 cách.
Theo qui tắc cộng, ta có 4 + 6 + 3 = 13 cách chọn.
Chọn đáp án A
Bài 2: Trong một hộp chứa sáu quả cầu trắng được đánh số từ 1 đến 6 và ba quả cầu đen được đánh số 7, 8, 9. Có bao nhiêu cách chọn một trong các quả cầu ấy?
A. 27
B. 9
C. 6
D.3
Vì các quả cầu trắng hoặc đen đều được đánh số phân biệt nên mỗi lần lấy ra một quả cầu bất kì là một lần chọn.
Nếu chọn một quả trắng có 6 cách.
Nếu chọn một quả đen có 3 cách.
Theo qui tắc cộng, ta có 6 + 3 = 9 cách chọn.
Chọn đáp án B
Bài 3: Giả sử từ tỉnh A đến tỉnh B có thể đi bằng các phương tiện: ô tô, tàu hỏa, tàu thủy hoặc máy bay. Mỗi ngày có 10 chuyến ô tô, 5 chuyến tàu hỏa, 3 chuyến tàu thủy và 2 chuyến máy bay. Hỏi có bao nhiêu cách đi từ tỉnh A đến tỉnh B?
A.20
B. 300
C. 18
D. 15
Nếu đi bằng ô tô có 10 cách.
Nếu đi bằng tàu hỏa có 5 cách.
Nếu đi bằng tàu thủy có 3 cách.
Nếu đi bằng máy bay có 2 cách.
Theo qui tắc cộng, ta có 10 + 5+ 3+ 2= 20 cách chọn.
Chọn đáp án A
Bài 4: Có 3 kiểu mặt đồng hồ đeo tay (vuông, tròn, elip) và 4 kiểu dây (kim loại, da, vải và nhựa). Hỏi có bao nhiêu cách chọn một chiếc đồng hồ gồm một mặt và một dây?
A. 4
B. 7
C.12
D. 24
Để chọn một chiếc đồng hồ, ta có:
Có 3 cách chọn mặt.
Có 4 cách chọn dây.
Vậy theo qui tắc nhân ta có:3.4 = 12 cách.
Chọn đáp án C
Bài 5: Một người có 4 cái quần, 6 cái áo, 3 chiếc cà vạt. Để chọn mỗi thứ một món thì có bao nhiều cách chọn bộ quần-áo-cà vạt khác nhau?
A. 13.
B. 72.
C. 12.
D. 30.
Để chọn một bộ quần-áo-cà vạt , ta có:
Có 4 cách chọn quần.
Có 6 cách chọn áo.
Có 3 cách chọn cà vạt.
Vậy theo qui tắc nhân ta có : 4.6.3 = 72 cách.
Chọn đáp án B
Bài 6: Một lớp có 23 học sinh nữ và 17 học sinh nam.
a) Hỏi có bao nhiêu cách chọn một học sinh tham gia cuộc thi tìm hiểu môi trường?
A. 23
B. 17
C. 40
D. 391
b) Hỏi có bao nhiêu cách chọn hai học sinh tham gia hội trại với điều kiện có cả nam và nữ?
A. 40
B. 391
C. 780
D. 1560
a) Theo quy tắc cộng có: 23 +17 = 40 cách chọn một học sinh tham gia cuộc thi môi trường. Vì vậy chọn đáp án C
b) Việc chọn hai học sinh (nam và nữ) phải tiến hành hai hành động liên tiếp
Hành động 1: chọn 1 học sinh nữ trong số 23 học sinh nữ nên có 23 cách chọn
Hành động 2: chọn 1 học sinh nam nên có 17 cách chọn
Theo quy tắc nhân, có 23.17 = 391 cách chọn hai học sinh tham gia hội trại có cả nam và nữ. Vì vậy chọn phương án B
Bài 7: Một túi có 20 viên bi khác nhau trong đó có 7 bi đỏ, 8 bi xanh và 5 bi vàng
a) Số cách lấy 3 viên bi khác màu là
A. 20
B. 280
C. 6840
D. 1140
b) Số cách lấy 2 viên bi khác màu là:
A. 40 B. 78400
C. 131 D. 2340
a) Việc chọn 3 viên bi khác màu phải tiến hành 3 hành động liên tiếp: chọn 1 bi đỏ trong 7 bi đỏ nên có 7 cách chọn, tương tự có 8 cách chọn 1 bi xanh và 5 cách chọn 1 bi vàng. Theo quy tắc nhân ta có: 7.8.5 = 280 cách. Vậy đáp án là B
b) Muốn lấy được 2 viên bi khác màu từ trong túi đã cho xảy ra các trường hợp sau:
- Lấy 1 bi đỏ và 1 bi xanh: có 7 cách để lấy 1 bi đỏ và 8 cách để lấy 1 bi xanh. Do đó có 7.8 = 56 cách lấy
- Lấy 1 bi đỏ và 1 bi vàng: có 7 cách lấy 1 bi đỏ và 5 cách lấy 1 bi vàng. Do đó co 7.5 = 35 cách lấy
- Lấy 1 bi xanh và 1 bi vàng: có 8 cách để lấy 1 bi xanh và 5 cách để lấy 1 bi vàng. Do đó có 8.5 = 40 cách để lấy
- Áp dụng quy tắc cộng cho 3 trường hợp, ta có 56 + 35 + 40 = 131 cách
Vì vậy chọn đáp án là C
Bài 8: Từ các số 0,1,2,3,4,5 có thể lập được:
a) Bao nhiêu số có hai chữ số khác nhau và chia hết cho 5?
A. 25
B. 10
C. 9
D. 20
b) Bao nhiêu số có 3 chữ số khác nhau chia hết cho 3?
A. 36
B. 42
C. 82944
D. Một kết quả khác
c) Bao nhiêu số có ba chữ số (không nhất thiết khác nhau) và là số chẵn?
A. 60
B. 90
C. 450
D. 100
Gọi tập hợp E = {0,1,2,3,4,5}
a) Số tự nhiên có hai chữ số khác nhau có dạng:
Với b = 0 thì có 5 cách chọn a ( vì a ≠ 0)
Với b = 5 thì có 4 cách chọn a ( vì a ≠ b và a ≠ 0)
Theo quy tắc cộng, có tất cả 5 + 4 = 9 số tự nhiên cần tìm. Chọn đáp án là C.
b) Số tự nhiên có ba chữ số khác nhau có dạng
Trong E có các bộ chữ số thoả mãn (*) là:
(0,1,2);(0,1,5);(0,2,4);(1,2,3);(1,3,5);(2,3,4);(3,4,5)
Mỗi bộ gồm ba chữ số khác nhau và khác 0 nên ta viết được 3.2.1 = 6 số có ba chữ số chia hết cho 3
Mỗi bộ gồm ba chữ số khác nhau và có một chữ số 0 nên ta viết được 2.2.1 = 4 số có ba chữ số chia hết cho 3
Vậy theo quy tắc cộng ta có: 6.4 + 4.3 = 36 số có 3 chữ số chia hết cho 3
Chọn đáp án là A
c) Số tự nhiên có 3 chữ số có dạng
Có ba cách chọn chữ số c ( vì c ∈ {0,2,4}).
Ứng với mỗi cách chọn c , có 6 cách chọn chữ số b (vì b ∈ E)
Ứng với mỗi cách chọn c, b có 5 cách chọn chữ số a (vì a ∈ E và a≠ 0)
Áp dụng quy tắc nhân ta có 3.6.5 = 90 số có 3 chữ số. Vì vậy đáp án là B
Bài 9: Giả sử bạn muốn mua một áo sơ mi size S hoặc size M. Áo size S có 5 màu khác nhau, áo size M có 4 màu khác nhau. Hỏi có bao nhiêu sự lựa chọn (về màu áo và cỡ áo)?
A. 9
B. 5
C. 4
D. 20
Nếu chọn áo size S thì sẽ có 5 cách.
Nếu chọn áo size M thì sẽ có 4 cách.
Theo qui tắc cộng, ta có 5+ 4= 9 cách chọn mua áo.
Chọn đáp án A
Bài 10: Trong một trường THPT, khối 11 có 280 học sinh nam và 325 học sinh nữ. Nhà trường cần chọn một học sinh ở khối 11 đi dự dạ hội của học sinh thành phố. Hỏi nhà trường có bao nhiêu cách chọn?
A. 280
B. 325
C. 45
D. 605
Nếu chọn một học sinh nam có 280 cách.
Nếu chọn một học sinh nữ có 325 cách.
Theo qui tắc cộng, ta có 280 + 325 = 605 cách chọn.
Chọn đáp án D
Bài 11: Số 253125000 có bao nhiêu ước số tự nhiên?
A. 160
B.240
C. 180
D. 120
Ta có 253125000 = 23.34.58 nên mỗi ước số tự nhiên của số đã cho đều có dạng 2m*3n*5p trong đó m, n, p ≠ N sao cho 0 ≤ m ≤ 3; 0 ≤ n ≤ 4; 0 ≤ p ≤ 8.
Có 4 cách chọn m; m ∈{0; 1; 2; 3}
Có 5 cách chọn n; n ∈{0; 1; 2; 3; 4}
Có 9 cách chọn p; p ∈{0; 1; 2; 3; 4; ....; 8}
Vậy theo qui tắc nhân ta có: 4.5.9 = 180 ước số tự nhiên.
Chọn đáp án C
Bài 12: Từ các chữ số 1; 5; 6; 7 có thể lập được bao nhiêu chữ số tự nhiên có 4 chữ số (không nhất thiết phải khác nhau) ?
A. 324
B. 256
C. 248
D. 124
Gọi số cần tìm có dạng abcd với (a, b, c, d) ∈ A = {1, 5, 6, 7}.
Vì số cần tìm có 4 chữ số không nhất thiết khác nhau nên:
a được chọn từ tập A (có 4 phần tử) nên có 4 cách chọn.
b được chọn từ tập A (có 4 phần tử) nên có 4 cách chọn.
c được chọn từ tập A (có 4 phần tử) nên có 4 cách chọn.
d được chọn từ tập A (có 4 phần tử) nên có 4 cách chọn.
Như vậy, ta có 4.4.4.4 = 256 số cần tìm.
Chọn đáp án B
Bài 13: Từ các chữ số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu chữ số tự nhiên bé hơn 100 ?
A. 36
B.62
C. 54
D. 42
Các số bé hơn 100 chính là các số có một chữ số và hai chữ số được hình thành từ tập A = {1, 2, 3, 4, 5, 6}.
Từ tập A có thể lập được 6 số có một chữ số.
Gọi số có hai chữ số có dạng ab với (a, b) ∈ A.
Trong đó:
a được chọn từ tập A (có 6 phần tử) nên có 6 cách chọn.
b được chọn từ tập A (có 6 phần tử) nên có 6 cách chọn.
Như vậy, ta có 6.6 = 36 số có hai chữ số.
Vậy, từ A có thể lập được 6 + 36 = 42 số tự nhiên bé hơn 100.
Chọn đáp án D
Bài 14: Từ các chữ số 0; 1; 2; 3 ;4; 5 có thể lập được bao nhiêu số lẻ gồm 4 chữ số khác nhau ?
A. 154
B. 145
C. 144
D. 155
Gọi số cần tìm có dạng abcd với (a, b, c, d) ∈ A = {0, 1, 2, 3, 4, 5}.
Vì abcd là số lẻ ⇒ d = {1, 3, 5} ⇒ d có 3 cách chọn.
Khi đó, a có 4 cách chọn (khác 0 và d),.
b có 4 cách chọn và c có 3 cách chọn.
Vậy có tất cả 3.4.4.3 = 144 số cần tìm.
Chọn đáp án C
Bài 15: Từ các chữ số 0; 1; 2; 3; 4; 5 có thể lập được bao nhiêu số chẵn gồm 4 chữ số khác nhau ?
A. 156
B. 144
C.96
D. 134
Gọi số cần tìm có dạng abcd với (a, b, c, d) ∈ A= {0, 1, 2, 3, 4, 5}.
Vì abcd là số chẵn ⇒ d = {0, 2, 4}.
TH1. Nếu d = 0, số cần tìm là abc0 Khi đó:
a được chọn từ tập A\{0} nên có 5 cách chọn.
b được chọn từ tập A\{0, a} nên có 4 cách chọn.
c được chọn từ tập A\{0, a, b} nên có 3 cách chọn.
Như vậy, ta có 5.4.3 = 60 số có dạng abc0
TH2. Nếu d ∈ {2, 4} ⇒ d có 2 cách chọn.
Khi đó, a có 4 cách chọn (khác 0 và d),
b có 4 cách chọn và c có 3 cách chọn.
Như vậy, ta có 2.4.4.3 = 96 số cần tìm như trên.
Vậy có tất cả 60 +96 = 156 số cần tìm.
Chọn đáp án A
Bài 16: Một bó hoa có 5 hoa hồng trắng, 6 hoa hồng đỏ và 7 hoa hồng vàng. Hỏi có mấy cách chọn lấy ba bông hoa có đủ cả ba màu.
A.240
B. 210
C. 18
D. 120
Để chọn ba bông hoa có đủ cả ba màu (nghĩa là chọn một bông hoa hồng trắng- một bông hoa hồng đỏ- hoa hồng vàng), ta có:
Có 5 cách chọn hoa hồng trắng.
Có 6 cách chọn hoa hồng đỏ.
Có 7 cách chọn hoa hồng vàng.
Vậy theo qui tắc nhân ta có 5.6.7 = 210 cách.
Chọn đáp án B
Bài 17: Một người vào cửa hàng ăn, người đó chọn thực đơn gồm một món ăn trong năm món, một loại quả tráng miệng trong năm loại quả tráng miệng và một nước uống trong ba loại nước uống. Có bao nhiêu cách chọn thực đơn.
A. 25
B. 75
C. 100
D. 15
Để chọn thực đơn, ta có:
Có 5 cách chọn món ăn.
Có 5 cách chọn quả tráng miệng.
Có 3 cách chọn nước uống.
Vậy theo qui tắc nhân ta có 5.5.3 = 75 cách.
Chọn đáp án B
Bài 18: Có 10 cặp vợ chồng đi dự tiệc. Tổng số cách chọn một người đàn ông và một người phụ nữ trong bữa tiệc phát biểu ý kiến sao cho hai người đó không là vợ chồng?
A. 100
B. 91
C.10
D. 90
Để chọn một người đàn ông và một người phụ nữ không là vợ chồng, ta có
Có 10 cách chọn người đàn ông.
Có 9 cách chọn người phụ nữ ( trừ 1 người là vợ của người đàn ông đã chọn trước đó).
Vậy theo qui tắc nhân ta có 10.9 = 90 cách.
Chọn đáp án D
Bài 19: Các thành phố A, B, C, D được nối với nhau bởi các con đường như hình vẽ. Hỏi có bao nhiêu cách đi từ A đến D mà qua B và C chỉ một lần?
A. 9.
B. 10.
C. 18.
D. 24.
Từ A đến B có 4 cách.
Từ B đến C có 2 cách.
Từ C đến D có 2 cách.
Vậy theo qui tắc nhân ta có 4.2.3 = 24 cách.
Chọn đáp án D
Bài 20: Trong một tuần bạn A dự định mỗi ngày đi thăm một người bạn trong 12 người bạn của mình. Hỏi bạn A có thể lập được bao nhiêu kế hoạch đi thăm bạn của mình (thăm một bạn không quá một lần)?
A. 3 991 680
B. 4309440
C. 84
D. 63
Một tuần có bảy ngày và mỗi ngày thăm một bạn.
Có 12 cách chọn bạn vào ngày thứ nhất.
Có 11 cách chọn bạn vào ngày thứ hai ( khác bạn ngày thứ nhất).
Có 10 cách chọn bạn vào ngày thứ ba ( khác bạn ngày thứ nhất, thứ 2)
Có 9 cách chọn bạn vào ngày thứ tư.
Có 8 cách chọn bạn vào ngày thứ năm.
Có 7 cách chọn bạn vào ngày thứ sáu.
Có 6 cách chọn bạn vào ngày thứ bảy.
Vậy theo qui tắc nhân ta có 12.11.10.9.8.7.6 = 3 991 680 cách.
Chọn đáp án A
Bài viết liên quan
- Trắc nghiệm Toán học 11 Một số phương trình lượng giác cơ bản có đáp án năm 2021 - 2022
- Trắc nghiệm Toán học 11 Ôn tập chương 1 có đáp án năm 2021 - 2022
- Trắc nghiệm Toán học 11 Hoán vị - Chỉnh hợp - Tổ hợp có đáp án năm 2021 - 2022
- Trắc nghiệm Toán học 11 Nhị thức Niu - Tơn có đáp án năm 2021 - 2022
- Trắc nghiệm Toán học 11 Phép thử và biến cố có đáp án năm 2021 - 2022