Cho tam giác ABC vuông cân tại A. Một đường thẳng a đi qua A

Lời giải Bài 56 trang 85 SBT Toán 7 sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 7.

192


Giải SBT Toán 7 Cánh diều Bài 8. Đường vuông góc và đường xiên

Bài 56 trang 85 SBT Toán 7 Tập 2: Cho tam giác ABC vuông cân tại A. Một đường thẳng a đi qua A. Gọi M và N lần lượt là hình chiếu của B và C trên đường thẳng a. Chứng minh:

a) ABM^=CAN^;

b) CN = MA;

c) Nếu a song song với BC thì MA = AN.

Lời giải

Sách bài tập Toán 7 Bài 8 (Cánh diều): Đường vuông góc và đường xiên  (ảnh 1) 

a) Xét MAB vuông tại M có: ABM^+MAB^=90° (trong tam giác vuông, tổng hai góc nhọn bằng 90).

Ta có MAB^+BAC^+CAN^=180°

Suy ra MAB^+CAN^=180°BAC^=90°

Lại có ABM^+MAB^=90°

Suy ra ABM^=CAN^.

Vậy ABM^=CAN^.

b) Xét MAB và NCA có:

BMA^=ANC^=90°,

BA = AC (vì tam giác ABC vuông cân tại A),

ABM^=CAN^ (chứng minh câu a).

Do đó ∆MAB = ∆NCA (cạnh huyền – góc nhọn).

Suy ra MA = NC (hai cạnh tương ứng).

Vậy MA = NC.

c) Vì tam giác ABC cân tại A nên ACB^=ABC^

Lại có ACB^+ABC^+BAC^=180° (tổng ba góc của tam giác ABC)

Suy ra ACB^=ABC^=180°90°2=45°.

• Nếu a // BC thì MAB^=ABC^ (hai góc so le trong).

Do đó MAB^=45°.

Xét ABM có AMB^+MBA^+MAB^=180° (tổng ba góc của một tam giác)

Suy ra MBA^=180°AMB^MAB^=180°90°45°=45°.

Do đó MAB^=MBA^ (cùng bằng 45°).

Xét ∆AMB có AMB^=90° và MAB^=MBA^ nên DAMB vuông cân tại M.

Suy ra MA = MB (1)

• Nếu a // BC thì CAN^=ACB^=45° (hai góc so le trong)

Xét ABM có ACN^+ANC^+CAN^=180° (tổng ba góc của một tam giác)

Suy ra ACN^=180°ANC^CAN^=180°90°45°=45°.

Do đó ACN^=CAN^ (cùng bằng 45°).

Xét ∆ANC có ANC^=90° và ACN^=CAN^ nên ∆ANC vuông cân tại N.

Suy ra CN = AN (2)

Từ (1) và (2) suy ra MA = AN.

Vậy MA = AN.

Bài viết liên quan

192