Giải Sách bài tập Toán 7 Cánh diều Bài 7: Tam giác cân 

Với giải sách bài tập Toán 7 Bài 7. Tam giác cân sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 7 Bài 7.

406


Giải sách bài tập Toán 7 Bài 7. Tam giác cân

Bài 43 trang 83 SBT Toán 7 Tập 2: Tìm các tam giác cân trên Hình 35. Kể tên các cạnh bên, cạnh đáy, góc ở đáy, góc ở đỉnh của mỗi tam giác cân đó.

Sách bài tập Toán 7 Bài 7 (Cánh diều): Tam giác cân  (ảnh 1) 

Lời giải

Ta có:

Tên tam giác cân

Cạnh bên

Cạnh đáy

Góc ở đáy

Góc ở đỉnh

∆ADE

(Do AD = AE = 2)

AD, AE

DE

ADE^,  AED^

DAE^

∆ABC

(Do AB = AC = 4)

AB, AC

BC

ABC^,  ACB^

BAC^

∆AHC

(Do AC = AH = 4)

AC, AH

CH

ACH^,  AHC^

HAC^

Bài 44 trang 83 SBT Toán 7 Tập 2: Hình 36 có AB song song cới CD, BC song song với AD. Tia phân giác của góc BAD cắt BC tại E và cắt tia DC tại F.

Sách bài tập Toán 7 Bài 7 (Cánh diều): Tam giác cân  (ảnh 1) 

a) Chứng minh các tam giác ABE, CEF, DAF là các tam giác cân.

b) Tính số đo mỗi góc của tam giác ADF, biết BAD^=60°.

Lời giải

a) • Vì AE là tia phân giác của BAD^ nên BAE^=EAD^.

Vì BC // AD nên BEA^=EAD^ (hai góc so le trong)

Do đó BAE^=BEA^.

Suy ra tam giác ABE cân tại B.

• Vì AB // CD nên BAE^=F^ (hai góc so le trong).

BAE^=BEA^(chứng minh trên), CEF^=BEA^(hai góc đối đỉnh).

Suy ra CEF^=F^.  

Nên tam giác CEF cân tại C.

• Ta có BAF^=DAF^ và BAF^=DFA^ nên DAF^=DFA^.

Do đó tam giác DAF cân tại D.

Vậy ABE cân tại B, CEF cân tại C, DAF cân tại D.

b) Vì AB // CD nên BAD^+ADF^=180° (hai góc trong cùng phía)

Suy ra ADF^=180°BAD^=180°60°=120°

Xét ADF có ADF^+DFA^+DAF^=180° (tổng ba góc của một tam giác).

ADF^=120°, DAF^=DFA^.

Nên DAF^=DFA^=180°ADF^2=180°120°2=30°.

Vậy DAF^=DFA^=30°,FDA^=120°.

Bài 45 trang 83 SBT Toán 7 Tập 2: Cho tam giác ABC cân tại A có BAC^=56°. Trên tia đối của tia CB lấy điểm M sao cho AC = CM. Tính số đo mỗi góc của tam giác ABM.

Lời giải

Sách bài tập Toán 7 Bài 7 (Cánh diều): Tam giác cân  (ảnh 1) 

• Vì tam giác ABC cân tại A nên ABC^=ACB^ (hai góc ở đáy).

Xét tam giác ABC có ABC^+ACB^+BAC^=180° (tổng ba góc của một tam giác)

Do đó ABC^=ACB^=180°BAC^2=180°56°2=62°.

• Ta có ACB^+ACM^=180° (hai góc kề bù)

Suy ra ACM^=180°ACB^=180°62°=118°.

• Vì AC = CM (giả thiết) nên tam giác ACM cân tại C.

Suy ra CAM^=CMA^ (hai góc ở đáy).

Xét AMC có: AMC^+ACM^+MAC^=180° (tổng ba góc của một tam giác).

Do đó CAM^=CMA^=180°ACM^2=180°118°2=31°.

Ta có BAM^=BAC^+CAM^=56°+31°=87°.

Vậy BAM^=87°,ABM^=62°,AMB^=31°.

Bài 46 trang 83 SBT Toán 7 Tập 2: Cho tam giác ABC. Gọi I là trung điểm của BC. Tính số đo góc BAC, biết IA = IB = IC.

Lời giải

Sách bài tập Toán 7 Bài 7 (Cánh diều): Tam giác cân  (ảnh 1) 

• Vì IA = IB nên tam giác IAB cân tại I.

Suy ra IBA^=IAB^

• Vì IA = IC nên tam giác IAC cân tại I.

Suy ra IAC^=ICA^

Xét ABC có: BAC^+CBA^+BCA^=180° (tổng ba góc của một tam giác).

Hay BAC^+IAB^+IAC^=2BAC^=180°

Do đó BAC^=90°

Vậy BAC^=90°.

Bài 47 trang 83 SBT Toán 7 Tập 2: Cho tam giác MNP cân tại P. Lấy điểm A trên cạnh PM, điểm B trên cạnh PN sao cho PA = PB. Gọi O là giao điểm của NA và MB. Chứng minh tam giác OMN là tam giác cân.

Lời giải

Sách bài tập Toán 7 Bài 7 (Cánh diều): Tam giác cân  (ảnh 1) 

MNP cân tại P nên ta có:

PM = PN (hai cạnh bên), PMN^=PNM^ (hai góc ở đáy).

Ta có PM = PA + AM, PN = PB + BN.

Mà PM = PN (chứng minh trên), PA = PB (giả thiết).

Suy ra AM = BN.

Xét AMN và BNM có:

AM = BN (chứng minh trên),

MN là cạnh chung,

AMN^=BNM^(do PMN^=PNM^)

Do đó ∆AMN = ∆BNM (c.g.c).

Suy ra ANM^=BMN^ (hai góc tương ứng).

Hay ONM^=OMN^

Do đó tam giác ONM cân tại O.

Vậy tam giác OMN là tam giác cân tại O.

Bài 48 trang 83 SBT Toán 7 Tập 2: Cho tam giác ABC cân tại A có BAC^=120°. Trên cạnh BC lấy các điểm D, E sao cho BD = BA, CE = CA.

a) Chứng minh các tam giác BAD, CAE, AED là các tam giác cân.

b) Tính số đo mỗi góc của tam giác ADE.

Lời giải

Sách bài tập Toán 7 Bài 7 (Cánh diều): Tam giác cân  (ảnh 1) 

a) Vì BD = BA (giả thiết) nên tam giác ABD cân tại B.

Suy ra BAD^=BDA^ (hai góc ở đáy).

Vì CE = CA (giả thiết) nên tam giác ACE cân tại C.

Suy ra CAE^=CEA^ (hai góc ở đáy).

Vì tam giác ABC cân tại A nên ABC^=ACB^

• Xét ABC có: BAC^+CBA^+BCA^=180° (tổng ba góc của một tam giác)

BAC^=120° (giả thiết), ABC^=ACB^

Suy ra ABC^=ACB^=180°BAC^2=180°120°2=30°.

• Xét ABD có: BAD^+DBA^+BDA^=180° (tổng ba góc của một tam giác)

ABD^=30°, BAD^=BDA^

Suy ra ADB^=180°ABD^2=180°30°2=75°.

• Xét ACE có: ACE^+AEC^+CAE^=180° (tổng ba góc của một tam giác)

ACE^=30°, CAE^=CEA^

Suy ra AEC^=180°ACE^2=180°30°2=75°.

Xét tam giác ADE có ADE^=AED^ (cùng bằng 75°).

Suy ra tam giác AED cân tại A.

Vậy ABD cân tại B, ACE cân tại C và AED cân tại A.

b) Xét ADE có: ADE^+AED^+DAE^=180° (tổng ba góc của một tam giác)

Suy ra DAE^=180°ADE^AED^=180°75°75°=30°.

Vậy ADE có ADE^=AED^=75°,EAD^=30°.

Bài 49 trang 83 SBT Toán 7 Tập 2: Cho Hình 37 có AB = AC = BC = BD = CE, ABD^=ACE^=90°.

Sách bài tập Toán 7 Bài 7 (Cánh diều): Tam giác cân  (ảnh 1) 

a) Chứng minh tam giác AED là tam giác cân.

b) Tính số đo các góc của tam giác ADE.

c) Chứng minh DC = BE.

Lời giải

a) Xét ABD và ACE có:

ABD^=ACE^=90° (giả thiết),

AB = AC (giả thiết),

BD = CE (giả thiết).

Do đó ∆ABD = ∆ACE (hai cạnh góc vuông)

Suy ra AD = AE (hai cạnh tương ứng).

Nên tam giác AED cân tại A.

Vậy tam giác AED cân tại A.

b) • Vì AB = AC = BC (giả thiết) nên tam giác ABC đều.

Suy ra ABC^=ACB^=BAC^=60°.

Vì AC = CE , ACE^=90° (giả thiết) nên tam giác ACE vuông cân tại C.

Suy ra CEA^=CAE^=180°90°2=45°.

Vì AB = BD , ABD^=90° (giả thiết) nên tam giác ABD vuông cân tại B.

Suy ra BAD^=BDA^=180°90°2=45°.

Ta có DAE^=DAB^+BAC^+CAE^=45°+60°+45°=150°.

• Vì tam giác AED cân tại A nên ADE^=AED^

Xét ADE có: ADE^+AED^+DAE^=180° (tổng ba góc của một tam giác)

EAD^=150°, ADE^=AED^

Suy ra ADE^=AED^=180°150°2=15°.

Vậy ADE có ADE^=AED^=15°,EAD^=150°.

c) Ta có DBC^=ABC^+ABD^=60°+90°=150°.

BCE^=ACB^+ACE^=60°+90°=150°.

Xét CBD và BCE có:

BC là cạnh chung,

DBC^=BCE^ (cùng bằng 150°),

BD = CE (giả thiết),

Do đó ∆BDC = ∆CEB (c.g.c).

Suy ra DC = EB (hai cạnh tương ứng)

Vậy DC = BE.

Bài 50 trang 84 SBT Toán 7 Tập 2: Cho tam giác đều ABC. Gọi E, D, F là ba điểm lần lượt nằm trên ba cạnh AB, AC, BC sao cho AD = CF = BE. Chứng minh tam giác DEF là tam giác đều.

Lời giải

Sách bài tập Toán 7 Bài 7 (Cánh diều): Tam giác cân  (ảnh 1) 

Vì tam giác ABC đều (giả thiết)

Nên AB = BC = AC và ABC^=BAC^=ACB^=60°.

Ta có AB = AE + BE, AC = AD + DC, BC = BF + FC

Mà AB = BC = AC, AD = CF = BE.

Suy ra AE = BF = CD.

• Xét ADE và BEF có:

AD = BE (giả thiết),

DAE^=FBE^ (cùng bằng 60°),

AE = BF (chứng minh trên).

Do đó ∆ADE = ∆BEF (c.g.c).

Suy ra DE = EF (hai cạnh tương ứng) (1)

• Xét CFD và BEF có:

CF = BE (giả thiết),

FCD^=EBF^ (cùng bằng 60°),

CD = BF (chứng minh trên).

Do đó CFD = BEF (c.g.c).

Suy ra FD = EF (hai cạnh tương ứng) (2)

Từ (1) và (2) suy ra DE = EF = FD.

Do đó tam giác DFE đều.

Vậy tam giác DEF là tam giác đều.

Bài 51* trang 84 SBT Toán 7 Tập 2: Cho tam giác ABC. Trên cạnh BA lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho CE = BD. Gọi O là giao điểm của DE và BC. Biết OD = OE. Chứng minh tam giác ABC là tam giác cân.

Lời giải

Sách bài tập Toán 7 Bài 7 (Cánh diều): Tam giác cân  (ảnh 1) 

Qua D vẽ DK // AC (K  BC) nên KDO^=OEC^ (hai góc so le trong).

Xét OKD và OCE có:

KDO^=OEC^ (chứng minh trên),

OD = OE (giả thiết),

DOK^=EOC^ (hai góc đối đỉnh).

Do đó ∆OKD = ∆OCE (g.c.g).

Suy ra KD = CE (hai cạnh tương ứng).

Mặt khác BD = CE suy ra DB = DK hay tam giác DBK cân tại D.

Suy ra DBK^=DKB^ (1)

Do DK // AC nên DKB^=ACB^ (hai góc đồng vị) (2)

Từ (1) và (2) ta có: ABC^=ACB^.

Suy ra tam giác ABC cân tại A.

Vậy tam giác ABC là tam giác cân tại A.

Bài viết liên quan

406