Từ một điểm A nằm ngoài đường thẳng d, vẽ đường vuông góc AH và các đường xiên AB, AC tùy ý

Lời giải Bài 54 trang 85 SBT Toán 7 sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 7.

254


Giải SBT Toán 7 Cánh diều Bài 8. Đường vuông góc và đường xiên

Bài 54 trang 85 SBT Toán 7 Tập 2: Từ một điểm A nằm ngoài đường thẳng d, vẽ đường vuông góc AH và các đường xiên AB, AC tùy ý (Hình 40).

Sách bài tập Toán 7 Bài 8 (Cánh diều): Đường vuông góc và đường xiên  (ảnh 1) 

a) So sánh độ dài AH và AB, AH và AC.

b) Chứng minh: Nếu AB = AC thì HB = HC; ngược lại, nếu HB = HC thì AB = AC.

Lời giải

a) Ta có AH và AB lần lượt là đường vuông góc và đường xiên kẻ từ điểm A đến đường thẳng d.

Suy ra AH < AB.

Tương tự, AH và AC lần lượt là đường vuông góc và đường xiên kẻ từ điểm A đến đường thẳng d.

Suy ra AH < AC.

Vậy AH < AB và AH < AC.

b) • Nếu AB = AC.

Xét AHB và AHC có:

AHB^=AHC^=90°,

AB = AC (giả thiết),

AH là cạnh chung

Do đó ∆ABH = ∆ACH (cạnh huyền – cạnh góc vuông).

Suy ra BH = CH (hai cạnh tương ứng).

• Nếu BH = CH

Xét AHB và AHC có:

AHB^=AHC^=90°,

BH = CH (giả thiết),

AH là cạnh chung

Do đó ∆ABH = ∆ACH (hai cạnh góc vuông).

Suy ra AB = AC (hai cạnh tương ứng).

Vậy nếu AB = AC thì HB = HC; ngược lại, nếu HB = HC thì AB = AC.

Bài viết liên quan

254