Cho tam giác ABC vuông tại A (AB < AC), BD là tia phân giác của góc ABC

Lời giải Bài 58 trang 86 SBT Toán 7 sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 7.

195


Giải SBT Toán 7 Cánh diều Bài 8. Đường vuông góc và đường xiên

Bài 58 trang 86 SBT Toán 7 Tập 2: Cho tam giác ABC vuông tại A (AB < AC), BD là tia phân giác của góc ABC (D  AC). Qua C kẻ tia Cx vuông góc với AC cắt BD tại M.

a) Chứng minh tam giác CBM là tam giác cân.

b) So sánh độ dài CM và AC.

Lời giải

Sách bài tập Toán 7 Bài 8 (Cánh diều): Đường vuông góc và đường xiên  (ảnh 1) 

a) Vì ABD vuông tại A nên B^1+D^1=90° (trong tam giác vuông, tổng hai góc nhọn bằng 90)

Mà B^1=B^2 (do BD là tia phân giác của góc ABC) và D^1=D^2 (hai góc đối đỉnh).

Nên B^2+D^2=90°

Vì CDM vuông tại C nên M^+D^2=90° (trong tam giác vuông, tổng hai góc nhọn bằng 90).

Suy ra M^=B^2

Do đó tam giác CBM cân tại C.

Vậy tam giác CBM cân tại C.

b) Vì tam giác CBM cân tại C (chứng minh câu a)

Nên CM = BC.

Vì ABC vuông tại A nên BC > AC (trong tam giác vuông, cạnh huyển là cạnh lớn nhất).

Suy ra CM > AC.

Vậy CM > AC.

Bài viết liên quan

195