Cho tam giác ABC cân tại A có góc BAC bằng 120 độ

Lời giải Bài 48 trang 83 SBT Toán 7 sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 7.

194


Giải SBT Toán 7 Cánh diều Bài 7. Tam giác cân

Bài 48 trang 83 SBT Toán 7 Tập 2Cho tam giác ABC cân tại A có BAC^=120°. Trên cạnh BC lấy các điểm D, E sao cho BD = BA, CE = CA.

a) Chứng minh các tam giác BAD, CAE, AED là các tam giác cân.

b) Tính số đo mỗi góc của tam giác ADE.

Lời giải

Sách bài tập Toán 7 Bài 7 (Cánh diều): Tam giác cân  (ảnh 1) 

a) Vì BD = BA (giả thiết) nên tam giác ABD cân tại B.

Suy ra BAD^=BDA^ (hai góc ở đáy).

Vì CE = CA (giả thiết) nên tam giác ACE cân tại C.

Suy ra CAE^=CEA^ (hai góc ở đáy).

Vì tam giác ABC cân tại A nên ABC^=ACB^

• Xét ABC có: BAC^+CBA^+BCA^=180° (tổng ba góc của một tam giác)

Mà BAC^=120° (giả thiết), ABC^=ACB^

Suy ra ABC^=ACB^=180°BAC^2=180°120°2=30°.

• Xét ABD có: BAD^+DBA^+BDA^=180° (tổng ba góc của một tam giác)

Mà ABD^=30°BAD^=BDA^

Suy ra ADB^=180°ABD^2=180°30°2=75°.

• Xét ACE có: ACE^+AEC^+CAE^=180° (tổng ba góc của một tam giác)

Mà ACE^=30°CAE^=CEA^

Suy ra AEC^=180°ACE^2=180°30°2=75°.

Xét tam giác ADE có ADE^=AED^ (cùng bằng 75°).

Suy ra tam giác AED cân tại A.

Vậy ABD cân tại B, ACE cân tại C và AED cân tại A.

b) Xét ADE có: ADE^+AED^+DAE^=180° (tổng ba góc của một tam giác)

Suy ra DAE^=180°ADE^AED^=180°75°75°=30°.

Vậy ADE có ADE^=AED^=75°,EAD^=30°.

Bài viết liên quan

194