Cho tam giác ABC cân tại A có góc BAC bằng 56 độ
Lời giải Bài 45 trang 83 SBT Toán 7 sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 7.
Bài 45 trang 83 SBT Toán 7 Tập 2: Cho tam giác ABC cân tại A có . Trên tia đối của tia CB lấy điểm M sao cho AC = CM. Tính số đo mỗi góc của tam giác ABM.
Lời giải
• Vì tam giác ABC cân tại A nên (hai góc ở đáy).
Xét tam giác ABC có (tổng ba góc của một tam giác)
Do đó .
• Ta có (hai góc kề bù)
Suy ra .
• Vì AC = CM (giả thiết) nên tam giác ACM cân tại C.
Suy ra (hai góc ở đáy).
Xét AMC có: (tổng ba góc của một tam giác).
Do đó .
Ta có .
Vậy
Xem thêm các bài giải sách bài tập Toán 7 bộ sách Cánh diều hay, chi tiết khác:
Bài 44 trang 83 SBT Toán 7 Tập 2: Ở Hình 36 có AB song song cới CD, BC song song với AD. Tia phân giác của góc BAD cắt BC tại E và cắt tia DC tại F...
Bài 45 trang 83 SBT Toán 7 Tập 2: Cho tam giác ABC cân tại A có . Trên tia đối của tia CB lấy điểm M sao cho AC = CM. Tính số đo mỗi góc của tam giác ABM...
Bài 46 trang 83 SBT Toán 7 Tập 2: Cho tam giác ABC. Gọi I là trung điểm của BC. Tính số đo góc BAC, biết IA = IB = IC...
Bài 47 trang 83 SBT Toán 7 Tập 2: Cho tam giác MNP cân tại P. Lấy điểm A trên cạnh PM, điểm B trên cạnh PN sao cho PA = PB. Gọi O là giao điểm của NA và MB. Chứng minh tam giác OMN là tam giác cân...
Bài 48 trang 83 SBT Toán 7 Tập 2: Cho tam giác ABC cân tại A có . Trên cạnh BC lấy các điểm D, E sao cho BD = BA, CE = CA...
Bài 49 trang 83 SBT Toán 7 Tập 2: Cho Hình 37 có AB = AC = BC = BD = CE, . a) Chứng minh tam giác AED là tam giác cân...
Bài 50 trang 84 SBT Toán 7 Tập 2: Cho tam giác đều ABC. Gọi E, D, F là ba điểm lần lượt nằm trên ba cạnh AB, AC, BC sao cho AD = CF = BE. Chứng minh tam giác DEF là tam giác đều...
Bài 51* trang 84 SBT Toán 7 Tập 2: Cho tam giác ABC. Trên cạnh BA lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho CE = BD. Gọi O là giao điểm của DE và BC. Biết OD = OE. Chứng minh tam giác ABC là tam giác cân...
Bài viết liên quan
- Giải Sách bài tập Toán 7 Cánh diều Bài 10: Tính chất ba đường trung tuyến của tam giác
- Giải Sách bài tập Toán 7 Cánh diều Bài 11: Tính chất ba đường phân giác của tam giác
- Giải Sách bài tập Toán 7 Cánh diều Bài 12: Tính chất ba đường trung trực của tam giác
- Giải Sách bài tập Toán 7 Cánh diều Bài 13: Tính chất ba đường cao của tam giác
- Giải Sách bài tập Toán 7 Cánh diều Bài tập cuối chương 7