Cho tam giác ABC cân tại A có góc BAC bằng 56 độ

Lời giải Bài 45 trang 83 SBT Toán 7 sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 7.

264


Giải SBT Toán 7 Cánh diều Bài 7. Tam giác cân

Bài 45 trang 83 SBT Toán 7 Tập 2: Cho tam giác ABC cân tại A có BAC^=56°. Trên tia đối của tia CB lấy điểm M sao cho AC = CM. Tính số đo mỗi góc của tam giác ABM.

Lời giải

Sách bài tập Toán 7 Bài 7 (Cánh diều): Tam giác cân  (ảnh 1) 

• Vì tam giác ABC cân tại A nên ABC^=ACB^ (hai góc ở đáy).

Xét tam giác ABC có ABC^+ACB^+BAC^=180° (tổng ba góc của một tam giác)

Do đó ABC^=ACB^=180°BAC^2=180°56°2=62°.

• Ta có ACB^+ACM^=180° (hai góc kề bù)

Suy ra ACM^=180°ACB^=180°62°=118°.

• Vì AC = CM (giả thiết) nên tam giác ACM cân tại C.

Suy ra CAM^=CMA^ (hai góc ở đáy).

Xét AMC có: AMC^+ACM^+MAC^=180° (tổng ba góc của một tam giác).

Do đó CAM^=CMA^=180°ACM^2=180°118°2=31°.

Ta có BAM^=BAC^+CAM^=56°+31°=87°.

Vậy BAM^=87°,ABM^=62°,AMB^=31°.

Bài viết liên quan

264