Cho tam giác ABC vuông tại A có AB < AC. Vẽ AD là tia phân giác của góc BAC

Lời giải Bài 106 trang 99 SBT Toán 7 sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 7.

174


Giải SBT Toán 7 Cánh diều Bài tập cuối chương 7

Bài 106 trang 99 SBT Toán 7 Tập 2Cho tam giác ABC vuông tại A có AB < AC. Vẽ AD là tia phân giác của góc BAC (D  BC). Trên AC lấy điểm E sao cho AE = AB.

a) Chứng minh ABD^=AED^.

b) Tia ED cắt AB tại F. Chứng minh AC = AF.

c) Gọi G là trung điểm của DF; AD cắt CF tại H và cắt CG tại I. Chứng minh DI = 2IH.

Lời giải

Sách bài tập Toán 7 (Cánh diều): Bài tập cuối chương 7  (ảnh 1) 

a) Xét ABD và EAD có:

AB = AE (giả thiết),

BAD^=EAD^ (do AD là tia phân giác của góc BAC)

AD là cạnh chung

Suy ra ∆ABD = ∆AED (c.g.c)

Do đó ABD^=AED^ (hai góc tương ứng)

Vậy ABD^=AED^.

b) Xét ABC và AEF có:

FAC^ là góc chung,

AB = AE (giả thiết),

ABC^=AEF^ (Do ABD^=AED^)

Suy ra ∆ABC = ∆AEF (g.c.g)

Do đó AC = AF (hai cạnh tương ứng)

Vậy AC = AF.

cXét ∆AHF và DAHC có:

AH là cạnh chung,

FAH^=CAH^ (do AD là tia phân giác của góc BAC),

AF = AC (chứng minh câu b)

Do đó ∆AHF = AHC (c.g.c)

Suy ra HF = HC (hai cạnh tương ứng).

Khi đó H là trung điểm của FC nên DH là đường trung tuyến xuất phát từ đỉnh D của tam giác DFC.

Xét tam giác DFC có CG và DH là hai đường trung tuyến, CG và DH cắt nhau tại I

Suy ra I là trọng tâm của tam giác DFC.

Do đó IH = 12ID (tính chất trọng tâm của tam giác)

Hay DI = 2IH.

Vậy DI = 2IH.

Bài viết liên quan

174