Cho tam giác ABC cân tại A có K là trung điểm của đoạn BC

Lời giải Bài 81 trang 92 SBT Toán 7 sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 7.

209


Giải SBT Toán 7 Cánh diều Bài 11. Tính chất ba đường phân giác của tam giác

Bài 81 trang 92 SBT Toán 7 Tập 2: Cho tam giác ABC cân tại A có K là trung điểm của đoạn BC. Hai đường phân giác BD và CE cắt nhau tại I. Chứng minh:

a) I cách đều ba cạnh của tam giác ABC;

b) KI là tia phân giác của góc EKD.

Lời giải

Sách bài tập Toán 7 Bài 11 (Cánh diều): Tính chất ba đường phân giác của tam giác  (ảnh 1) 

a) Vì ba đường phân giác của tam giác ABC cùng đi qua một điểm nên giao điểm I của hai đường phân giác BD và CE cũng thuộc đường phân giác xuất phát từ đỉnh A của tam giác ABC.

Suy ra I cách đều ba cạnh AB, BC, AC.

Vậy I cách đều ba cạnh của tam giác ABC.

b) • Vì BD là tia phân giác của góc ABC nên ABD^=DBC^=12ABC^.

Vì CE là tia phân giác của góc ACB nên ACE^=ECB^=12ACB^.

Mà ABC^=ACB^ (do tam giác ABC cân tại A).

Suy ra ABD^=DBC^=ACE^=ECB^.

• Xét ∆ABD và ∆ACE có:

BAC^ là góc chung,

AB = AC (do tam giác ABC cân tại A),

ABD^=ACE^ (chứng minh trên).

Do đó ∆ABD = ∆ACE (g.c.g).

Suy ra AD = AE (hai cạnh góc vuông).

• Xét ∆ABK và ∆ACK có:

AB = AC (chứng minh trên),

AK là cạnh chung,

BK = CK (do K là trung điểm của BC).

Do đó ∆ABK = ∆ACK (c.c.c).

Suy ra BAK^=CAK^ (hai góc tương ứng).

Hay EAK^=DAK^.

• Xét ∆AEK và ∆ADK có:

AE = AD (chứng minh trên),

EAK^=DAK^ (chứng minh trên),

AK là cạnh chung.

Do đó ∆AEK = ∆ADK (c.g.c)

Suy ra AKE^=AKD^ (hai góc tương ứng)

Nên KA là đường phân giác của góc EKD.

Mặt khác do BAK^=CAK^ nên AK là tia phân giác của góc BAC.

Mà theo câu a, I thuộc đường phân giác xuất phát từ đỉnh A của tam giác ABC

Nên AI cũng là đường phân giác của góc BAC.

Do vậy, ba điểm A, I, K thẳng hàng.

Khi đó KI cũng là đường phân giác của góc EKD.

Vậy KI là tia phân giác của góc EKD.

Bài viết liên quan

209