A = 1x+√x+2√xx-1-1x-√x; x>0, x≠1
Quảng cáo
1 câu trả lời 207
To simplify the expression A = \frac{1}{x + \sqrt{x}} + \frac{2\sqrt{x}}{x - 1} - \frac{1}{x - \sqrt{x}} for x > 0 and x \neq 1 , we will first work on combining the terms by finding a common denominator.
First, let's write the expression with a common denominator for the first and the last terms:
\frac{1}{x + \sqrt{x}} - \frac{1}{x - \sqrt{x}} = \frac{(x - \sqrt{x}) - (x + \sqrt{x})}{(x + \sqrt{x})(x - \sqrt{x})} = \frac{x - \sqrt{x} - x - \sqrt{x}}{(x + \sqrt{x})(x - \sqrt{x})} = \frac{-2\sqrt{x}}{(x + \sqrt{x})(x - \sqrt{x})}.
Next, we simplify the denominator:
(x + \sqrt{x})(x - \sqrt{x}) = x^2 - (\sqrt{x})^2 = x^2 - x.
Thus,
\frac{1}{x + \sqrt{x}} - \frac{1}{x - \sqrt{x}} = \frac{-2\sqrt{x}}{x^2 - x}.
Now, let's rewrite the expression A :
A = \frac{-2\sqrt{x}}{x^2 - x} + \frac{2\sqrt{x}}{x - 1}.
Notice that the second term has x - 1 in the denominator, which is a factor of x^2 - x . We can factor x^2 - x as:
x^2 - x = x(x - 1).
So the expression becomes:
A = \frac{-2\sqrt{x}}{x(x - 1)} + \frac{2\sqrt{x}}{x - 1}.
To combine these fractions, we'll use a common denominator, x(x - 1) :
A = \frac{-2\sqrt{x}}{x(x - 1)} + \frac{2\sqrt{x} \cdot x}{x(x - 1)} = \frac{-2\sqrt{x} + 2x\sqrt{x}}{x(x - 1)}.
Combine the numerators:
A = \frac{2x\sqrt{x} - 2\sqrt{x}}{x(x - 1)} = \frac{2\sqrt{x}(x - 1)}{x(x - 1)}.
We can cancel the x - 1 in the numerator and the denominator:
A = \frac{2\sqrt{x}}{x}.
Simplify:
A = \frac{2\sqrt{x}}{x} = \frac{2}{\sqrt{x}} = 2x^{-\frac{1}{2}}.
Thus, the simplified form of A is:
A = 2x^{-\frac{1}{2}}.
Quảng cáo
Câu hỏi hot cùng chủ đề
-
100738
-
Hỏi từ APP VIETJACK65090
-
53504
-
44546
-
32355
-
26740