Cho đường trong (O, R) và đường thẳng d không qua O cắt đường tròn tại hai điểm A, B. Lấy một điểm M trên tia đối của tia BA kẻ hai tiếp tuyến MC, MD với đường tròn (C, D là các tiếp điểm). Gọi H là trung điểm của AB.
1) Chứng minh rằng các điểm M, D, O, H cùng nằm trên một đường tròn.
2) Đoạn OM cắt đường tròn tại I. Chứng minh rằng I là tâm đường tròn nội tiếp tam giác MCD.
3) Đường thẳng qua O, vuông góc với OM cắt các tia MC, MD thứ tự tại P và Q. Tìm vị trí của điểm M trên d sao cho diện tích tam giác MPQ bé nhất.
Quảng cáo
4 câu trả lời 47768
Cho đường trong (O, R) và đường thẳng d không qua O cắt đường tròn tại hai điểm A, B. Lấy một điểm M trên tia đối của tia BA kẻ hai tiếp tuyến MC, MD với đường tròn (C, D là các tiếp điểm). Gọi H là trung điểm của AB.
1) Chứng minh rằng các điểm M, D, O, H cùng nằm trên một đường tròn.
2) Đoạn OM cắt đường tròn tại I. Chứng minh rằng I là tâm đường tròn nội tiếp tam giác MCD.
3) Đường thẳng qua O, vuông góc với OM cắt các tia MC, MD thứ tự tại P và Q. Tìm vị trí của điểm M trên d sao cho diện tích tam giác MPQ bé nhất.
Cho đường trong (O, R) và đường thẳng d không qua O cắt đường tròn tại hai điểm A, B. Lấy một điểm M trên tia đối của tia BA kẻ hai tiếp tuyến MC, MD với đường tròn (C, D là các tiếp điểm). Gọi H là trung điểm của AB.
1) Chứng minh rằng các điểm M, D, O, H cùng nằm trên một đường tròn.
2) Đoạn OM cắt đường tròn tại I. Chứng minh rằng I là tâm đường tròn nội tiếp tam giác MCD.
3) Đường thẳng qua O, vuông góc với OM cắt các tia MC, MD thứ tự tại P và Q. Tìm vị trí của điểm M trên d sao cho diện tích tam giác MPQ bé nhất.
Quảng cáo
Câu hỏi hot cùng chủ đề
-
3 93501
-
Hỏi từ APP VIETJACK3 59349
-
2 36546
-
13 33854