Cho tam giác có độ dài cạnh lớn nhất bằng 4 cm
Lời giải Bài 9.10 trang 52 SBT Toán 7 sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 7.
Giải SBT Toán 7 Kết nối tri thức Bài 33: Quan hệ giữa ba cạnh trong một tam giác
Bài 9.10 trang 52 SBT Toán 7 Tập 2: Cho tam giác có độ dài cạnh lớn nhất bằng 4 cm. Hãy giải thích tại sao chu vi tam giác đó bé hơn 12 cm và lớn hơn 8 cm.
Lời giải:
Gọi độ dài ba cạnh tam giác là a, b, c (cm), (a > b > c).
Cạnh lớn nhất là a = 4, b < 4, c < 4.
Chu vi tam giác là: a + b + c < 4 + 4 + 4 = 12.
Mặt khác, theo bất đẳng thức tam giác: b + c > a
Hay a + b + c > a + a
Suy ra a + b + c > 2a = 8
Do đó 8 < a + b + c < 12
Vậy chu vi tam giác đó bé hơn 12 cm và lớn hơn 8 cm.
Xem thêm các bài giải sách bài tập Toán 7 bộ sách Kết nối tri thức hay, chi tiết khác:
Bài 9.10 trang 52 SBT Toán 7 Tập 2: Cho tam giác có độ dài cạnh lớn nhất bằng 4 cm. Hãy giải thích tại sao chu vi tam giác đó bé hơn 12 cm và lớn hơn 8 cm...
Bài 9.11 trang 52 SBT Toán 7 Tập 2: Tam giác ABC có AB = 2 cm, BC = 5 cm, AC = b (cm) với b là một số nguyên. Hỏi b có thể bằng bao nhiêu?...
Bài 9.12 trang 52 SBT Toán 7 Tập 2: Tam giác ABC có AB = 2 cm, BC = 3 cm. Đặt CA = b (cm). a) Chứng minh rằng 1 < b < 5...
Bài 9.13 trang 52 SBT Toán 7 Tập 2: a) Cho P là một điểm bên trong tam giác ABC. Chứng minh rằng: AB + AC > PB + PC...
Bài viết liên quan
- Giải Sách bài tập Toán 7 Kết nối tri thức Bài 32: Quan hệ giữa đường vuông góc và đường xiên
- Giải Sách bài tập Toán 7 Kết nối tri thức Bài 33: Quan hệ giữa ba cạnh trong một tam giác
- Giải Sách bài tập Toán 7 Kết nối tri thức Bài 34: Sự đồng quy của ba đường trung tuyến, ba đường phân giác trong một tam giác
- Giải Sách bài tập Toán 7 Kết nối tri thức Bài 35: Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác
- Giải Sách bài tập Toán 7 Kết nối tri thức Ôn tập chương 9