Cho tam giác ABC với AB > AC. Gọi M là trung điểm của cạnh BC

Lời giải Bài 9.4 trang 48 SBT Toán 7 sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 7.

169


Giải SBT Toán 7 Kết nối tri thức Bài 31: Quan hệ giữa góc và cạnh đối diện trong một tam giác

Bài 9.4 trang 48 SBT Toán 7 Tập 2: Cho tam giác ABC với AB > AC. Gọi M là trung điểm của cạnh BC.

a) Hãy so sánh hai góc MAB và MAC.

(HD. Lấy điểm P sao cho M là trung điểm của AP rồi chứng minh hai tam giác AMC và PMB bằng nhau).

b) Tia phân giác của góc BAC cắt BC tại D. Hỏi D thuộc đoạn thẳng MB hay đoạn thẳng MC? Vì sao?

Lời giải:

Sách bài tập Toán 7 Bài 31 (Kết nối tri thức): Quan hệ giữa góc và cạnh đối diện trong một tam giác  (ảnh 1)

a) Lấy P là điểm thuộc đường thẳng AM sao cho M là trung điểm của AP.

Xét hai tam giác ∆ AMC và ∆ PMB có:

AM = PM (M là trung điểm của AP)

MC = MB (M là trung điểm của BC)

AMC^=PMB^ (hai góc đối đỉnh)

Do đó ∆AMC = ∆PMB (c.g.c)

Suy ra MAC^=MPB^  (hai góc tương ứng) (1)

Và AC = PB

Mà AB > AC (gt)

Nên suy ra AB > PB

Xét tam giác ABP có AB > PB (cmt) nên theo định lí 1 ta có APB^>BAP^  (2)

Từ (1) và (2) suy ra MAC^>MAB^  (3).

b) AD là đường phân giác của góc BAC nên ta có: BAD^=DAC^  (4)

Từ (3) và (4) nên suy ra được: 2MAC^>MAC^+MAB^=BAC^

 

Hay  2MAC^>DAB^+DAC^=2DAC^

Suy ra MAC^>DAC^ .

Do đó MC > DC.

Vậy D là điểm thuộc đoạn thẳng MC.

Bài viết liên quan

169