Cho tam giác ABC vuông tại A. Trên tia đối của tia AB lấy điểm D sao cho AB = AD

Lời giải Bài 96 trang 97 SBT Toán 7 sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 7.

222


Giải SBT Toán 7 Cánh diều Bài 13. Tính chất ba đường cao của tam giác

Bài 96 trang 97 SBT Toán 7 Tập 2: Cho tam giác ABC vuông tại A. Trên tia đối của tia AB lấy điểm D sao cho AB = AD. Vẽ BE vuông góc với CD tại E. Gọi I là giao điểm của AC và BE; K là hình chiếu của I trên BC.

a) Chứng minh ba điểm D, I, K thẳng hàng.

b) Tìm điều kiện của tam giác ABC để I là trọng tâm của tam giác BCD.

Lời giải

Sách bài tập Toán 7 Bài 13 (Cánh diều): Tính chất ba đường cao của tam giác  (ảnh 1) 

a) Xét tam giác BCD có I là giao điểm của hai đường cao CA và BE nên I là trực tâm của tam giác DBC.

Suy ra DI  BC.  

Mặt khác, IK  BC (giả thiết).

Do đó đường cao DI đi qua K nên ba điểm D, I, K thẳng hàng.

Vậy ba điểm D, I, K thẳng hàng.

b) Xét CDA và CBA có:

CAD^=CAB^=90o,

CA là cạnh chung,

AD = AB (giả thiết)

Do đó CDA = CBA (hai cạnh góc vuông)

Suy ra CD = CB (hai cạnh tương ứng) (1)

Tam giác BCD có I là trọng tâm của tam giác nên BE là đường trung tuyến của tam giác.

Do đó CE = DE.

Chứng minh tương tự như trên ta cũng có BDE = BCE (hai cạnh góc vuông)

Suy ra BD = BC (hai cạnh tương ứng) (2)

Từ (1) và (2) ta có BC = CD = DB nên tam giác BCD là tam giác đều.

Do đó DBC^=60° hay ABC^=60°

Vậy điều kiện của tam giác ABC để I cũng là trọng tâm của tam giác BCD là tam giác ABC vuông tại A có ABC^=60°.

Bài viết liên quan

222