Chứng minh: Nếu một tam giác có hai đường trung tuyến bằng nhau thì tam giác đó là tam giác cân
Lời giải Bài 72 trang 90 SBT Toán 7 sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 7.
Bài 72 trang 90 SBT Toán 7 Tập 2: Chứng minh: Nếu một tam giác có hai đường trung tuyến bằng nhau thì tam giác đó là tam giác cân.
Lời giải
Tam giác ABC có hai trung tuyến BM và CN bằng nhau.
Gọi G là giao điểm của BM và CN.
Theo tính chất trọng tâm tam giác có: BG = BM và CG = CN.
Vì BM = CN nên BG = CG.
Suy ra tam giác BGC cân tại G.
Do đó (hai góc ở đáy).
Xét MBC và NCB có:
BC là cạnh chung,
(do ),
MB = NC (giả thiết)
Do đó ∆MBC = ∆NCB (c.g.c)
Suy ra (hai góc tương ứng).
Khi đó tam giác ABC cân tại A.
Vậy nếu một tam giác có hai đường trung tuyến bằng nhau thì tam giác đó là tam giác cân.
Xem thêm các bài giải sách bài tập Toán 7 bộ sách Cánh diều hay, chi tiết khác:
Bài viết liên quan
- Giải Sách bài tập Toán 7 Cánh diều Bài 10: Tính chất ba đường trung tuyến của tam giác
- Giải Sách bài tập Toán 7 Cánh diều Bài 11: Tính chất ba đường phân giác của tam giác
- Giải Sách bài tập Toán 7 Cánh diều Bài 12: Tính chất ba đường trung trực của tam giác
- Giải Sách bài tập Toán 7 Cánh diều Bài 13: Tính chất ba đường cao của tam giác
- Giải Sách bài tập Toán 7 Cánh diều Bài tập cuối chương 7