Cho tam giác ABC có ba góc đều nhọn và góc A bằng 60 độ

Lời giải Bài 41 trang 81 SBT Toán 7 sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 7.

168


Giải SBT Toán 7 Cánh diều Bài 6. Trường hợp bằng nhau thứ ba của tam giác: góc – cạnh – góc

Bài 41 trang 81 SBT Toán 7 Tập 2: Cho tam giác ABC có ba góc đều nhọn và A^=60°. Tia phân giác của góc ABC cắt AC tại D, tia phân giác của góc ACB cắt AB tại E. BD cắt CE tại I. Tia phân giác của góc BIC cắt BC tại F. Chứng minh:

a) BIC^=120°;

b) ∆BEI = ∆BFI;

c) BC = BE + CD.

Lời giải

Sách bài tập Toán 7 Bài 6 (Cánh diều): Trường hợp bằng nhau thứ ba của tam giác: góc – cạnh – góc  (ảnh 1) 

a) Vì BD là phân giác của góc ABC nên ABD^=CBD^=ABC^2.

Vì CE là phân giác của góc ACB nên ACE^=ECB^=ACB^2.

Xét ABC có: A^+ABC^+ACB^=180° (tổng ba góc của một tam giác)

Suy ra ABC^+ACB^=180°A^=180°60°=120°

Xét IBC có: BIC^+IBC^+ICB^=180° (tổng ba góc của một tam giác)

Hay BIC^+ABC^2+ACB^2=180°

Suy ra BIC^=180°ABC^+ACB^2=180°120°2=120°

Vậy BIC^=120°.

b) Vì IF là phân giác của góc BIC nên BIF^=CIF^=BIC^2=120°2=60°

Ta có BIC^+BIE^=180° (hai góc kề bù)

Suy ra BIC^=180°ABC^+ACB^2=180°120°2=120°

Xét BEI và BFI có:

EBI^=FBI^ (chứng minh câu a),

BI là cạnh chung,

EIB^=FIB^ (cùng bằng 60°),

Do đó ∆BEI = ∆BFI (g.c.g).

Vậy ∆BEI = ∆BFI.

c) Do ∆BEI = ∆BFI (câu b) nên BE = BF (hai cạnh tương ứng).

Ta có BIC^+CID^=180° (hai góc kề bù)

Suy ra CID^=180°BIC^=180°120°=60°.

Xét CFI và CDI có:

FCI^=DCI^ (chứng minh câu a),

CI là cạnh chung,

CIF^=CID^ (cùng bằng 60°),

Suy ra ∆CFI = ∆CDI (g.c.g).

Do đó CF = CD (hai cạnh tương ứng).

Ta có: BC = BF + FC = BE + CD.

Vậy BC = BE + CD.

Bài viết liên quan

168