Cho tam giác ABC có AB = AC. Gọi D là trung điểm của BC

Lời giải Bài 39 trang 81 SBT Toán 7 sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 7.

198


Giải SBT Toán 7 Cánh diều Bài 6. Trường hợp bằng nhau thứ ba của tam giác: góc – cạnh – góc

Bài 39 trang 81 SBT Toán 7 Tập 2Cho tam giác ABC có AB = AC. Gọi D là trung điểm của BC. Vẽ CM vuông góc với AB tại M, BN vuông góc với AC tại N. Chứng minh AM = AN.

Lời giải

Sách bài tập Toán 7 Bài 6 (Cánh diều): Trường hợp bằng nhau thứ ba của tam giác: góc – cạnh – góc  (ảnh 1) 

Xét ABD và ACD có:

AB = AC (giả thiết),

BD = CD (do D là trung điểm của BC),

AD là cạnh chung

Do đó ∆ABD = ∆ACD (c.c.c).

Suy ra ABD^=ACD^ hay MBC^=NCB^.

Xét BMC và CNB có:

BMC^=CNB^=90°,

BC là cạnh chung,

MBC^=NCB^ (chứng minh trên),

Do đó BMC và CNB (cạnh huyền – góc nhọn).

Suy ra BM = CN (hai cạnh tương ứng).

Ta có AB = AM + MB, AC = AN + NC.

Mà AB = AC, BM = CN.

Suy ra AM = AN.

Vậy AM = AN.

Bài viết liên quan

198