Cho tam giác ABC có AB = AC. Gọi D là trung điểm của BC
Lời giải Bài 39 trang 81 SBT Toán 7 sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 7.
Giải SBT Toán 7 Cánh diều Bài 6. Trường hợp bằng nhau thứ ba của tam giác: góc – cạnh – góc
Bài 39 trang 81 SBT Toán 7 Tập 2: Cho tam giác ABC có AB = AC. Gọi D là trung điểm của BC. Vẽ CM vuông góc với AB tại M, BN vuông góc với AC tại N. Chứng minh AM = AN.
Lời giải
Xét ABD và ACD có:
AB = AC (giả thiết),
BD = CD (do D là trung điểm của BC),
AD là cạnh chung
Do đó ∆ABD = ∆ACD (c.c.c).
Suy ra hay .
Xét BMC và CNB có:
,
BC là cạnh chung,
(chứng minh trên),
Do đó BMC và CNB (cạnh huyền – góc nhọn).
Suy ra BM = CN (hai cạnh tương ứng).
Ta có AB = AM + MB, AC = AN + NC.
Mà AB = AC, BM = CN.
Suy ra AM = AN.
Vậy AM = AN.
Xem thêm các bài giải sách bài tập Toán 7 bộ sách Cánh diều hay, chi tiết khác:
Bài viết liên quan
- Giải Sách bài tập Toán 7 Cánh diều Bài 10: Tính chất ba đường trung tuyến của tam giác
- Giải Sách bài tập Toán 7 Cánh diều Bài 11: Tính chất ba đường phân giác của tam giác
- Giải Sách bài tập Toán 7 Cánh diều Bài 12: Tính chất ba đường trung trực của tam giác
- Giải Sách bài tập Toán 7 Cánh diều Bài 13: Tính chất ba đường cao của tam giác
- Giải Sách bài tập Toán 7 Cánh diều Bài tập cuối chương 7