Xét tam giác ABC vuông tại A; đường phân giác góc B cắt cạnh AC tại E

Lời giải Bài 9.25 trang 60 SBT Toán 7 sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 7.

168


Giải SBT Toán 7 Kết nối tri thức Ôn tập chương 9

Bài 9.25 trang 60 SBT Toán 7 Tập 2: Xét tam giác ABC vuông tại A; đường phân giác góc B cắt cạnh AC tại E; đường thẳng qua E vuông góc với BC cắt đường thẳng AB tại K. Chứng minh:

a) AE < EC;

b) BK = BC.

Lời giải:

Sách bài tập Toán 7 (Kết nối tri thức) Ôn tập chương 9 (ảnh 1)

a) Đường thẳng EK cắt BC tại H.

Do E nằm trên đường thẳng BE là đường phân giác của góc KBC nên EA = EH.

Mà trong tam giác EHC là tam giác vuông tại H có EH < EC (do EC là cạnh huyền).

Từ đó ta suy ra được: AE < EC (đpcm).

b) E là giao của hai đường cao CA VÀ KH của tam giác BKC nên E là trực tâm của tam giác BKC.

Từ đó suy ra BE cũng là đường cao của tam giác BKC.

Do đó BE vừa là đường phân giác, vừa là đường cao của tam giác BKC.

Nên suy ra tam giác BKC cân tại B.

Vậy BK = BC (đpcm).

Bài viết liên quan

168