Tìm các hệ số p và q của đa thức F(x) = x^2 + px + q, biết rằng với số a tùy ý
Lời giải Bài 7.14 trang 25 SBT Toán 7 sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 7.
Giải SBT Toán 7 Kết nối tri thức Bài 25: Đa thức một biến
Bài 7.14 trang 25 SBT Toán 7 Tập 2: Tìm các hệ số p và q của đa thức F(x) = x2 + px + q, biết rằng với số a tùy ý, giá trị của F(x) tại x = a, tức là F(a) luôn bằng (a + 2)2.
Lời giải:
Theo đề bài, với a là một số tùy ý, ta luôn có:
a2 + pa + q = (a + 2)2 (1)
Chọn a = 0 thì phương trình (1) trở thành :
0 + 0p + q = (2 + 2)2 suy ra q = 4
Khi đó F(a) = a2 + pa + 4 = (a + 2)2 (2)
Chọn a = 1 thì phương trình (2) trở thành:
12 + p.1 + 4 = (1 + 2)2
1 + p + 4 = 32
p = 9 − 1 − 4 = 4
Vậy q = 4 và p = 4.
Xem thêm các bài giải sách bài tập Toán 7 bộ sách Kết nối tri thức hay, chi tiết khác:
Bài viết liên quan
- Giải Sách bài tập Toán 7 Kết nối tri thức Bài 25: Đa thức một biến
- Giải Sách bài tập Toán 7 Kết nối tri thức Bài 26: Phép cộng và phép trừ đa thức một biến
- Giải Sách bài tập Toán 7 Kết nối tri thức Bài 27: Phép nhân đa thức một biến
- Giải Sách bài tập Toán 7 Kết nối tri thức Bài 28: Phép chia đa thức một biến
- Giải Sách bài tập Toán 7 Kết nối tri thức Ôn tập chương 7