Bài tập cuối chương 7
Bộ 15 Bài tập cuối chương 7 có đáp án đầy đủ gồm các câu hỏi trắc nghiệm đầy đủ các mức độ nhận biết, thông hiểu, vận dụng, vận dung cao sách Cánh diều giúp học sinh ôn luyện trắc nghiệm Toán 10 Bài tập cuối chương 7.
Trắc nghiệm Toán 10 Bài tập cuối chương 7 - Cánh diều
Câu 1. Vectơ nào dưới đây là một vectơ pháp tuyến của đường thẳng đi qua hai điểm A(a; 0) và B(0; b)?
A. (a; – b);
B. (a; b);
C. (– b; a);
D. (b; a).
Đáp án: A
Giải thích:
Ta có:
đường thẳng AB có VTCP hoặc
đường thẳng AB có VTPT là .
Câu 2. Cho A (2; –4), B (–5; 3). Tìm tọa độ của .
A. (7; –7);
B. (–7; 7);
C. (9; –5);
D. (1; –5).
Đáp án: B
Giải thích:
Câu 3. Trong hệ tọa độ Oxy cho tam giác ABC có B (9 ; 7), C (11 ; –1). Gọi M, N lần lượt là trung điểm của AB, AC. Tìm tọa độ vectơ ?
A. (2 ; – 8);
B. (1 ; – 4);
C. (10 ; 6);
D. (5 ; 3).
Đáp án: B
Giải thích:
Xét tam giác ABC, có:
M là trung điểm AB
N là trung điểm AC
Suy ra MN là đường trung bình tam giác ABC
Theo tính chất đường trung bình,ta có:
= .(2; –8) = (1; –4).
Câu 4. Trong hệ tọa độ Oxy cho = (5 ; 2), = (10 ; 8). Tìm tọa độ của vectơ .
A. (15; – 10);
B. (2; 4);
C. (– 5; – 10);
D. (50; 16).
Đáp án: C
Giải thích:
Ta có: 3= 3(5 ; 2) = (15 ; 6) ; 2 = 2(10 ; 8) = (20 ; 16)
= (15 – 20 ; 6 – 16) = (– 5; – 10).
Câu 5. Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng đi qua hai điểm A(– 3; 2) và B(1; 4).
A. (1; 3);
B. (2; 1);
C. (1; 3);
D. (3; 1).
Đáp án: B
Giải thích:
Đường thẳng đi qua hai điểm A(– 3; 2) và B(1; 4) có VTCP là:
= (4; 2) = 2(2; 1)hay .
Câu 6. Trong hệ tọa độ Oxy cho tam giác ABC có A (6 ; 1), B (–3 ; 5) và trọng tâm G (–1 ;1). Tìm tọa độ đỉnh C?
A. C (6 ; – 3);
B. C (– 6 ; 3);
C. C (– 6 ; – 3);
D. C (– 3 ; 6).
Đáp án: C
Giải thích:
Gọi toạ độ C(x ; y), ta có:
Vì G là trọng tâm tam giác ABC nên :
hay C (–6; –3).
Câu 7. Khoảng cách từ giao điểm của đường thẳng x – 3y + 4 = 0 và 2x + 3y – 1 = 0 đến đường thẳng : 3x + y + 3 = 0 bằng:
A. ;
B.;
C. ;
D. 2.
Đáp án: C
Giải thích:
+) Giao điểm của hai đường thẳng:
Ta có: , vậy điểm A (–1; 1) là giao điểm của hai đường thẳng
+) Khoảng cách từ A đến : 3x + y + 3 = 0:
Câu 8. Góc tạo bởi hai đường thẳng nào dưới đây bằng 90°
A. : 6x – 5y + 4 = 0 và
B.
C. d1: x – 2y + 4 = 0 và d2: y + 1 = 0;
D. và d2: 3x + 2y – 4 = 0.
Đáp án: A
Giải thích:
+) Đường thẳng : 6x – 5y + 4 = 0 có VTPT là
Đường thẳng có VTCP là nên VTCP là
Ta có: . Do đó d1 ⊥ d2 hay góc giữa hai đường thẳng bằng 90°.
+) Đường thẳng có VTCP là
Đường thẳng có VTCP là
Ta có: nên và cùng phương. Do đó hai đường thẳng d1 song song hoặc trùng d2. Do đó góc giữa hai đường thẳng bằng 0°.
+) Đường thẳng d1: x – 2y + 4 = 0 có VTPT là
Đường thẳng d2: y + 1 = 0 có VTPT là
Áp dụng công thức tính góc giữa hai đường thẳng ta được:
⇒ (d1 ; d2) ≈ 26°34’.
+) Đường thẳng có VTCP là nên VTCP là
Đường thẳng d2: 3x + 2y – 4 = 0 có VTPT là
Áp dụng công thức tính góc giữa hai đường thẳng ta được:
⇒ (d1 ; d2) ≈ 22°37’.
Câu 9. Trong hệ tọa độ Oxy cho ba điểm A(3; 5), B(1; 2), C(5; 2) và D(m ; n) . Tính m + n để ACDB là hình bình hành.
A. m + n = 3;
B. m + n = – 1;
C. m + n = 2;
D. m + n = 4.
Đáp án: C
Giải thích:
Ta có: ; .
Để ACDB là hình bình hành thì =
⇒ m + n = 3 + (– 1) = 2.
Câu 10. Trong hệ tọa độ Oxy cho tam giác ABC có A (– 2 + x ; 2), B (3 ; 5 + 2y), C(x ; 3 – y). Tìm tổng 2x + y với x, y để O (0 ; 0) là trọng tâm tam giác ABC?
A. – 7;
B. – 2 ;
C. – 11;
D. .
Đáp án: C
Giải thích:
Vì O là trọng tâm tam giác ABC nên, ta có :
.
Câu 11. Trong hệ tọa độ Oxy cho ba điểm A (1; 3) ; B (– 1; 2) ; C (– 2 ; 1) . Tìm tọa độ của vectơ .
A. (– 5; – 3);
B. (1; 1);
C. (– 1; 2);
D. (– 1; 1).
Đáp án: B
Giải thích:
Câu 12. Cho = (–2m; 2), = (2; –7n). Tìm giá trị của m và n để tọa độ của vectơ = (6; –5).
A. m = 4 và n = – 1;
B. m = – 4 và n = – 1;
C. m = 4 và n = 1;
D. m = – 4 và n = 1.
Đáp án: B
Giải thích:
Ta có: = (–2m; 2) – (2; –7n) = (–2m –2; 2 + 7n)
Mà = (6; – 5)
Nên ta có:
Vậy m = – 4 và n = – 1.
Câu 13. Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(3; -4);B(1; 5) và C(3; 1). Tính diện tích tam giác ABC.
A. 10;
B. 5;
C.
D.
Đáp án: B
Giải thích:
+) Viết phương trình đường thẳng BC; độ dài BC
- Ta có: B(1; 5); C(3; 1) ⇒ (2; – 4) là vectơ chỉ phương của đường thẳng BC
Ta chọn = (2; 1) là vectơ pháp tuyến của đường thẳng BC (), ta viết được phương trình đường thẳng qua BC như sau: 2.(x – 1) + 1.(y – 5) = 0 hay
2x + y – 7 = 0
- Độ dài BC: BC =
+) Tính độ dài đường cao kẻ từ A:
Độ dài đường cao kẻ từ A chính là khoảng cách từ A đến phương trình đường thẳng qua BC, ta có:
+) Diện tích tam giác ABC:
= = 5.
Câu 14. Tọa độ tâm I và bán kính R của đường tròn (C): x2 + y2 = 16 là:
A. I (0; 0), R = 9;
B. I (0; 0), R = 81;
C. I (1; 1), R = 3;
D. I (0; 0), R = 4;
Đáp án: D
Giải thích:
Ta có:(C): x2 + y2 = 16
I (0; 0); R = = 4.
Câu 15. Cho đường thẳng Đường thẳng nào sau đây trùng với đường thẳng d.
Đáp án: A
Giải thích:
Đường thẳng có VTCP là = (4; – 4) = 4.(1; – 1). Suy ra VTCP của đường thẳng d cũng là vectơ có tọa độ (1; – 1).
Với t = 1 thì . Do đó đường thẳng d đi qua điểm có tọa độ (1; – 2).
Vì vậy đường thẳng d trùng với đường thẳng
Câu 16. Trong hệ tọa độ Oxy cho ba điểm A (–1 ; 1), B (1 ; 3), C (–1; 4) , D(1; 0). Khẳng định nào sau đây đúng?
A.
B.
C.
D.
Đáp án: C
Giải thích:
Ta có: nhận thấy
= -2. (-1; -1) = .
Câu 17. Phương trình đường thẳng cắt hai trục tọa độ tại A(– 2 ; 0) và B(0 ; 4) là:
A. 2x – 3y + 2 = 0;
B. 4x – 2y + 8 = 0;
C. 3x – 3y – 6 = 0;
D. 2x – 3y – 5 = 0.
Đáp án: B
Giải thích:
Ta có:
Phương trình đường thẳng:4x – 2y + 8 = 0
Câu 18. Khoảng cách từ điểm M( –1; 1) đến đường thẳng : 3x – 4y – 3 = 0 bằng:
A.
B. 2;
C.
D.
Đáp án: B
Giải thích:
Áp dụng công thức tính khoảng cách từ một điểm đến đường thẳng ta có:
Câu 19. Cho hai vectơ và . Tìm các số thực a và b sao cho cặp vectơ đã cho bằng nhau:
A. a = 2, b = – 1;
B. a = – 1, b = 2;
C. a = – 1, b = – 2;
D. a = 2, b = 1.
Đáp án: A
Giải thích:
Để
Vậy a = 2 và b = – 1.
Câu 20. Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng đi qua gốc tọa độ O(0; 0) và điểm M(a; b)?
A. (– a; – b);
B. (a; b);
C. (1; a);
D.(1; b).
Đáp án: B
Giải thích:
Ta có:
đường thẳng OM có VTCP:
Câu 21. Một đường thẳng có bao nhiêu vectơ chỉ phương?
A. 2;
B. 5;
C. 7;
D. Vô số.
Đáp án: D
Giải thích:
Câu 22. Viết phương trình tham số của đường thẳng d đi qua điểm M(6; –10)và vuông góc với trục Oy?
Đáp án: B
Giải thích:
Ta có: , mặt khác
Phương trình tham số , với t = – 4 ta được
hay A (2; – 10) d
Câu 23. Xét vị trí tương đối của hai đường thẳng:
: 3x – 2y – 3 = 0 và : 6x – 2y – 8 = 0
A. Trùng nhau;
B. Song song;
C. Vuông góc với nhau;
D. Cắt nhau nhưng không vuông góc nhau.
Đáp án: D
Giải thích:
Ta có: : 3x – 2y – 3 = 0 có VTPT là = (3; – 2) và : 6x – 2y – 8 = 0 có VTPT là = (6; – 2).
Ta có: nên hai vectơ và không cùng phương.
Do đó đường thẳng d1 và d2 cắt nhau.
Ta lại có nên d1 và d2 không vuông góc với nhau.
Vậy hai đường thẳng cắt nhau nhưng không vuông góc.
Câu 24. Đường tròn (C): x2 + y2 – 8x + 2y + 6 = 0 có tâm I, bán kính R lần lượt là:
A. I (3; – 1), R = 4;
B. I (– 3; 1), R = 4;
C. I (4; – 1), R = ;
D. I (– 3; 1), R = 2.
Đáp án: C
Giải thích:
Ta có:(C): x2 + y2 – 8x + 2y + 6 = 0⇔ x2 + y2 – 2.4x – 2.(– 1)y + 6 = 0
⇒a = 4; b = – 1 và c = 6
⇒I (4; – 1), .
Câu 25. Đường tròn (C)đi qua ba điểm A (– 1; – 2), B(0; 1) và C(1; 2) có phương trình là:
A. (x – 4)2 + (y – 2)2 = 52;
B. (x – 4)2 + (y + 2)2 = 52;
C. (x + 4)2 + (y + 2)2 = 52;
D. (x + 4)2 + (y – 2)2 = 52.
Đáp án: B
Giải thích:
Gọi phương trình đường tròn cần tím có dạng (C): x2 + y2 + 2ax + 2by + c = 0.
Vì (C) đi qua các điểm A, B, C nên lần lượt thay tọa độ các điểm vào phương trình (C) ta được hệ phương trình:
Vậy phương trình đường tròn (C) là x2 + y2 – 8x + 4y – 5 = 0 ⇔ (x – 4)2 + (y + 2)2 = 52.
Câu 26. Phương trình tiếp tuyến d của đường tròn (C): x2 + y2 – 3x – y = 0 tại điểm N(1; – 1) là:
A. d: x + 3y – 2 = 0;
B. d: x – 3y + 4 = 0;
C. d: x – 3y – 4 = 0;
D. d: x + 3y + 2 = 0.
Đáp án: D
Giải thích:
Xét phương trình (C): x2 + y2 – 3x – y = 0 ⇔ .
Khi đó đường tròn (C) có tâm nên tiếp tuyến tại N có VTPT là:
Nên có phương trình là: 1(x – 1) +3(y + 1) = 0x + 3y + 2 = 0.
Câu 27. Viết phương trình tiếp tuyến của đường tròn ,
biết tiếp tuyến vuông góc đường thẳng d: 3x – 4y – 2018 = 0.
A. 3x – 4y + 39 = 0 hoặc 3x – 4y – 11 = 0;
B. 4x + 3y + 39 = 0 hoặc 3x – 4y – 11 = 0;
C. 3x – 4y + 39 = 0 hoặc 4x + 3y – 11 = 0;
D. 4x + 3y + 39 = 0 hoặc 4x + 3y – 11 = 0.
Đáp án: D
Giải thích:
Xét phương trình đường thẳng d có VTPT là (3; – 4) suy ra VTCP của đường thẳng d là (4; 3).
Vì phương trình tiếp tuyến vuông góc với đường thẳng d nên nhận (4; 3) làm VTPT khi đó phương trình tiếp tuyến có dạng: 4x + 3y + c = 0
Ta có: Đường tròn (C) có tâm I(– 2; – 2), R = 5
Bán kính đường tròn:
Suy ra có hai phương trình tiếp tuyến thỏa mãn: 4x + 3y + 39 = 0 hoặc :4x + 3y –11 = 0.
Câu 28. Elip có độ dài trục bé bằng:
A. 2;
B. 4;
C. 1;
D.
Đáp án: D
Giải thích:
Phương trình của Elip là có độ dài trục lớn B1B2 = 2b.
Xét
Câu 29. Đường thẳng nào là đường chuẩn của parabol
A.
B.
C.
D. .
Đáp án: D
Giải thích:
Phương trình chính tắc của parabol
2p = 2 p =1. Phương trình đường chuẩn là =.
Câu 30. Elip có tiêu cự bằng:
A.
B. 5,
C. 10,
D. 2.
Đáp án: D
Giải thích:
Gọi phương trình của Elip là có tiêu cự là 2c
Xét
= 16 – 4 = 12c = 2c = 2.
Các câu hỏi trắc nghiệm Toán 10 sách Cánh diều có đáp án, chọn lọc khác:
Bài viết liên quan
- Trắc nghiệm Toán 10 Bài 2: Biểu thức tọa độ của các phép toán vectơ
- Trắc nghiệm Toán 10 Bài 3: Phương trình đường thẳng
- Trắc nghiệm Toán 10 Bài 4: Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng
- Trắc nghiệm Toán 10 Bài 5: Phương trình đường tròn
- Trắc nghiệm Toán 10 Bài 6: Ba đường conic