Cho đa thức F(x) = x^4 − x^3 − 6x^2 + 15x − 9

Lời giải Bài 9 trang 70 SBT Toán 7 sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 7.

169


Giải SBT Toán 7 Kết nối tri thức Bài tập ôn tập cuối năm

Bài 9 trang 70 SBT Toán Tập 2 

Cho đa thức F(x) = x4 − x3 − 6x2 + 15x − 9.

a) Kiểm tra lại rằng x = 1 và x = −3 là hai nghiệm của F(x).

b) Tìm đa thức G(x) sao cho F(x) = (x − 1)(x + 3) . G(x)

Lời giải:

a) Ta có : F(1) = 14 − 13 – 6 . 12 + 15 . 1 − 9

= 1 − 1 − 6 + 15 − 9 = 0.

F(−3) = (−3)4 − (−3)3 – 6 . (−3)2 + 15 . (−3) − 9

= 81 + 27 − 6.9 + 15. (−3) − 9

= 81 + 27 − 54 − 45 − 9 = 0.

Vậy  x = 1 và x = −3 là hai nghiệm của F(x).

b) Ta có G(x) = F(x) : [(x − 1)(x + 3)]

= F(x) : [ x(x +3) – 1 . (x + 3)]

= F(x) : (x2 + 3x − x − 3)

= F(x) : (x2 +2x − 3)

Ta đặt tính chia :

Sách bài tập Toán 7 (Kết nối tri thức) Bài tập ôn tập cuối năm (ảnh 1)

Vậy G(x) = x2 − 3x + 3.

Bài viết liên quan

169