Cho đa thức P(x). Chứng minh rằng: a) Nếu P(x) chia hết cho x – a

Lời giải Bài 7.33 trang 34 SBT Toán 7 sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 7.

219


Giải SBT Toán 7 Kết nối tri thức Bài 28: Phép chia đa thức một biến

Bài 7.33 trang 34 SBT Toán Tập 2: Cho đa thức P(x). Chứng minh rằng:

a) Nếu P(x) chia hết cho x – a thì a là một nghiệm của đa thức P(x).

b) Nếu x = a là một nghiệm của đa thức P(x) thì P(x) chia hết cho x – a.

Lời giải:

a) Giả sử P(x) chia hết cho x – a. Gọi Q(x) là đa thức thương, ta có:

P(x) = (x − a)Q(x) (1)

Từ đẳng thức (1), ta có P(a) = (a − a)Q(a) = 0.

Vậy a là một nghiệm của P(x).

b) Ngược lại, cho a là một nghiệm của P(x). Giả sử chia P(x) cho x – a, ta được thương là Q(x) và dư là R(x), nghĩa là ta có:

P(x) = (x – a)Q(x) + R(x) (2)

Trong đó hoặc R(x) = 0, hoặc nếu R(x) ≠ 0 thì R(x) phải có bậc nhỏ hơn bậc của đa thức x – a, tức là nhỏ hơn 1.

Sau đây, ta sẽ chứng tỏ rằng chỉ có thể xảy ra R(x) = 0.

Thật vậy, nếu R(x) ≠ 0 thì do bậc của R(x) nhỏ hơn 1 nên R(x) có bậc 0. Nói cách khác, R(x) là một số khác 0 nào đó. Nhưng điều đó là vô lí vì khi đó đẳng thức (2) không thể xảy ra, chẳng hạn khi x = a thì vế trái bằng 0 trong khi vế phải khác 0.

Vậy chỉ có thể xảy ra R(x) = 0, nghĩa là P(x) chia hết cho x – a.

Bài viết liên quan

219