Quan sát Hình 44, biết ∆MAB = ∆NAB. Chứng minh đường thẳng AB là đường trung trực

Lời giải Bài 62 trang 87 SBT Toán 7 sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 7.

177


Giải SBT Toán 7 Cánh diều Bài 9. Đường trung trực của một đoạn thẳng

Bài 62 trang 87 SBT Toán 7 Tập 2: Quan sát Hình 44, biết ∆MAB = ∆NAB. Chứng minh đường thẳng AB là đường trung trực của đoạn thẳng MN.

Sách bài tập Toán 7 Bài 9 (Cánh diều): Đường trung trực của một đoạn thẳng  (ảnh 1) 

Lời giải

Vì ∆MAB = ∆NAB (giả thiết)

Suy ra AM = AN, BM = BN (các cặp cạnh tương ứng).

Do đó A và B cùng cách đều hai điểm M, N.

Suy ra A và B cùng nằm trên đường trung trực của đoạn thẳng MN.

Hay đường thẳng AB là đường trung trực của đoạn thẳng MN.

Vậy đường thẳng AB là đường trung trực của đoạn thẳng MN.

Bài viết liên quan

177