Cho tam giác ABC có A(3; 7), B(-2; 2), C(6; 1). Viết phương trình tổng quát của các đường cao
Lời giải Bài 30 trang 73 SBT Toán 10 sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 10.
Bài 30 trang 73 SBT Toán 10 Tập 2: Cho tam giác ABC có A(3; 7), B(-2; 2), C(6; 1). Viết phương trình tổng quát của các đường cao của tam giác ABC.
Lời giải:
Gọi các đường cao của tam giác ABC lần lượt là AD, BE, CF.
Đường thẳng AD vuông góc BC nên AD có vectơ pháp tuyến là .
Và AD đi qua A(3; 7) nên phương trình tổng quát của đường thẳng AD là:
8(x – 3) – (y – 7) = 0 hay 8x – y – 17 = 0.
Đường thẳng BE vuông góc AC nên BE có vectơ pháp tuyến là .
Và BE đi qua B( – 2; 2) nên phương trình tổng quát của đường thẳng BE là:
(x + 2) – 2(y – 2) = 0 hay x – 2y + 6 = 0.
Đường thẳng CF vuông góc AB nên CF có vectơ pháp tuyến là .
Và CF đi qua C(6; 1) nên phương trình tổng quát của đường thẳng CF là:
(x – 6) + (y – 1) = 0 hay x + y – 7 = 0.
Xem thêm các bài giải sách bài tập Toán 10 bộ sách Cánh diều hay, chi tiết khác:
Bài 31 trang 74 SBT Toán 10 Tập 2: Cho đường thẳng ∆: và điểm A(2; 1). Hai điểm M, N nằm trên ∆. a) Tìm tọa độ điểm M sao cho ...
Bài 32 trang 74 SBT Toán 10 Tập 2: Cho ba điểm A(- 2; 2), B(7; 5), C(4; - 5) và đường thẳng ∆: 2x + y – 4 = 0. a) Tìm tọa độ điểm M thuộc ∆ và cách đều hai điểm A và B...
Bài viết liên quan
- Giải Sách bài tập Toán 10 Cánh diều Bài 3: Phương trình đường thẳng
- Giải Sách bài tập Toán 10 Cánh diều Bài 4: Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng
- Giải Sách bài tập Toán 10 Cánh diều Bài 5: Phương trình đường tròn
- Giải Sách bài tập Toán 10 Cánh diều Bài 6: Ba đường conic
- Giải Sách bài tập Toán 10 Cánh diều Bài tập cuối chương 7