Giải Sách bài tập Toán 10 Cánh diều Bài 5: Phương trình đường tròn
Với giải sách bài tập Toán 10 Bài 5: Phương trình đường tròn sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 10 Bài 5.
Giải sách bài tập Toán lớp 10 Bài 5: Phương trình đường tròn - Cánh diều
Giải SBT Toán 10 trang 88 Tập 2
Bài 47 trang 88 SBT Toán 10 Tập 2: Phương trình nào sau đây không là phương trình đường tròn?
Lời giải:
Câu A: là phương trình đường tròn tâm O(0; 0) bán kính R = 2.
Câu B: là phương trình đường tròn có tâm (-1; 0) bán kính R = .
Câu C: không thể biến đổi về dạng của phương trình đường tròn.
Câu D: là phương trình đường tròn có tâm (0; -2) và bán kính R = 1.
Vậy chọn đáp án C.
Lời giải:
Dễ dàng ta thấy theo dạng phương trình đường tròn thì tâm I của (C) có tọa độ là I(-8; 10).
Vậy chọn đáp án B.
Lời giải:
Dễ dàng ta thấy theo dạng phương trình đường tròn thì bán kính của đường tròn là R =
Vậy chọn đáp án C.
Giải SBT Toán 10 trang 89 Tập 2
Lời giải:
Đường tròn tâm I(- 4; 2) bán kính R = 9 có phương trình là:
Vậy chọn đáp án D.
Lời giải:
Đường tròn có tâm I(3; 4).
Tiếp tuyến tại M của đường tròn có vectơ pháp tuyến là vectơ
Vậy chọn đáp án A.
Lời giải:
Do M, N chuyển động trên đường tròn nên khoảng cách lớn nhất giữa 2 điểm M, N chính bằng đường kính của đường tròn.
Bán kính của đường tròn (C) là: .
Vậy độ dài lớn nhất của MN = 2R = 8. Chọn đáp án B.
Lời giải:
Ta biến đổi như sau:
x2 + y2 – 6x + 2ky + 2k + 12 = 0
⇔ (x – 3)2 + (y + k)2 = k2 – 2k – 3
Để phương trình trên là phương trình đường tròn thì
Vậy k < – 1 hoặc k > 3.
Bài 54 trang 89 SBT Toán 10 Tập 2: Viết phương trình đường tròn (C) trong mỗi trường hợp sau:
a) (C) có tâm I(- 6; 2) bán kính 7.
b) (C) có tâm I(3; - 7) và đi qua điểm A(4; 1)
c) (C) có tâm I(1; 2) và tiếp xúc với đường thẳng 3x + 4y + 19 = 0.
d) (C) có đường kính AB với A(- 2; 3) và B(0; 1)
e) (C) có tâm I thuộc đường thẳng và (C) tiếp xúc với hai đường thẳng
Lời giải:
a) Phương trình (C) có tâm I(- 6; 2) bán kính 7 là: (x + 6)2 + (y – 2)2 = 72.
b) Bán kính của đường tròn (C) là: IA
Phương trình đường tròn là: .
c) Bán kính của đường tròn chính bằng khoảng cách từ I đến đường thẳng d: 3x + 4y + 19 = 0.
Suy ra
Phương trình đường tròn là: .
d) Gọi I là tâm của đường tròn thì IA = R và I là trung điểm của AB
Suy ra I(-1; 2),
Phương trình đường tròn là: .
e) Tâm I thuộc đường thẳng nên I(1 + t; 1 – t)
Đường tròn có 2 tiếp tuyến nên khoảng cách từ I đến 2 tiếp tuyến bằng nhau và bằng bán kính của đường tròn.
Ta có:
Với t = thì I và R = d(I; ∆2) = . Khi đó phương trình đường tròn là: .
Với t = thì I và R = d(I; ∆2) = . Khi đó phương trình đường tròn là: .
a) ∆ tiếp xúc (C) tại điểm có tung độ bằng 3.
b) ∆ vuông góc với đường thẳng 5x – 12y + 1 = 0.
Lời giải:
Đường tròn có tâm I(-2; 3) và bán kính R = 2.
a) Hoành độ của điểm có tung độ bằng 3 là:
Suy ra ta có 2 điểm M(0; 3) và điểm N(-4; 3).
Vectơ pháp tuyến của đường thẳng IM là: .
Phương trình đường thẳng IM: 2(x – 0) = 0 hay x = 0.
Vectơ pháp tuyến của đường thẳng IN là: .
Phương trình đường thẳng IN: - 2(x + 4) = 0 hay x + 4 = 0.
Vậy phương trình đường thẳng là: x = 0 hoặc x + 4 = 0.
b) ∆ vuông góc với đường thẳng 5x – 12y + 1 = 0
nên ∆ có dạng: 12x + 5y + c = 0.
Khoảng cách từ I đến ∆ bằng R nên
Với c = 35 thì phương trình tiếp tuyến là: 12x + 5y + 35 =0
Với c = - 17 thì phương trình tiếp tuyến là: 12x + 5y – 17 =0
c) Gọi H(a ;b) là tiếp điểm.
Do D(0; 4) thuộc nên DH vuông góc với IH và IH = R = 2.
Ta có: và
⇒ IH =
⇔ a2 + 4a + 4 + b2 – 6b + 9 = 4
⇔ a2 + 4a + b2 – 6b + 9 = 0 (1)
Ta lại có:
⇔ a2 + 2a + b2 – 7b + 12 = 0 (2)
Từ (1) và (2) ta có hệ phương trình:
Với a = 0, b = 3 thì H(0; 3)
Suy ra
Do đó phương trình tiếp tuyến cần tìm là: 2(x – 0) = 0 ⇔ x = 0.
Với
Suy ra
Do đó phương trình tiếp tuyến cần tìm là: 3(x – 0) + 4(y – 4) = 0 ⇔ 3x + 4y – 16 = 0.
Vậy có hai đường thẳng ∆ thỏa mãn yêu cầu là x = 0 hoặc 3x + 4y – 16 = 0.
Bài 56 trang 89 SBT Toán 10 Tập 2: Trong mặt phẳng tọa độ Oxy, cho đường tròn và điểm A(- 1; 3)
a) Xác định vị trí tương đối của điểm A đối với đường tròn (C).
Lời giải:
a) Đường tròn (C) có tâm I(-2; 4) và bán kính R = = 5.
Ta có: < 5
Do đó A nằm trong đường tròn (C).
b) Dây cung MN ngắn nhất khi khoảng cách từ tâm I đến dây cung là lớn nhất
Do d đi qua A cố định nên khi d thay đổi thì khoảng cách lớn nhất từ I đến d chính bằng IA.
Hay IA vuông góc với d.
Vectơ pháp tuyến của đường thẳng d:
Phương trình đường thẳng d: (x + 1) – (y – 3) = 0 ⇔ x – y + 4 = 0.
Giải SBT Toán 10 trang 90 Tập 2
Lời giải:
Đường tròn (C) có tâm I(-3; 1) và bán kính R = 3.
Ta có: , suy ra cắt đường tròn tại hai điểm phân biệt.
, suy ra tiếp xúc với đường tròn.
, suy ra không có điểm
chung với đường tròn.
Lời giải:
Gọi H là hình chiếu của M lên
Suy ra MH là khoảng cách từ M đến
MH =
Xét tam giác MNH vuông tại H có:
MN =
Mà R = MN =
Phương trình đường tròn là: .
Bài viết liên quan
- Giải Sách bài tập Toán 10 Cánh diều Bài 2: Biểu thức tọa độ của các phép toán vectơ
- Giải Sách bài tập Toán 10 Cánh diều Bài 3: Phương trình đường thẳng
- Giải Sách bài tập Toán 10 Cánh diều Bài 4: Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng
- Giải Sách bài tập Toán 10 Cánh diều Bài 6: Ba đường conic
- Giải Sách bài tập Toán 10 Cánh diều Bài tập cuối chương 7