Giải Toán 7 (Cánh diều) Bài 1: Góc ở vị trí đặc biệt
Hoidap.vietjack.com trân trọng giới thiệu: lời giải bài tập Toán lớp 7 Bài 1: Góc ở vị trí đặc biệt sách Cánh diều hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 7 Bài 1. Mời các bạn đón xem:
Mục lục Giải bài tập Toán 7 Bài 1: Góc ở vị trí đặc biệt
Hoạt động khởi động
Hai góc đó có liên hệ gì đặc biệt?
Lời giải:
Trong Hình 1:
Hai góc có đỉnh chung.
Góc tạo bởi kim giờ và kim phút có hai cạnh là kim giờ và kim phút;
Góc tạo bởi kim phút và kim giây có hai cạnh là kim phút và kim giây.
Hai góc có 1 cạnh chung (đó là kim phút), cạnh chung đó nằm giữa hai cạnh còn lại (kim giờ và kim giây) của mỗi góc.
1. Hai góc kề nhau
b) Đoạn thẳng AB có cắt đường thẳng xy hay không?
Lời giải:
a) Ta thực hiện từng bước như yêu cầu của ý a.
Bước 1: Lấy điểm A trên Oz (A khác O).
Bước 2: Lấy điểm B trên Ot (B khác O).
Bước 3: Vẽ đoạn thẳng AB.
b) Quan sát hình đã vẽ ta thấy được: Đoạn thẳng AB cắt đường thẳng xy.
Hoạt động 2 trang 90 Toán lớp 7 Tập 1:Quan sát hai góc xOy và zOy ở Hình 3.
a) Nêu đỉnh chung và cạnh chung của hai góc xOy và zOy.
c) Hai tia Ox và Oz có nằm về hai phía của đường thẳng yy’ hay không?
Lời giải:
a) Góc xOy có đỉnh góc là đỉnh O.
Góc zOy có đỉnh góc là đỉnh O
Do đó, đỉnh O là đỉnh chung của hai góc xOy và zOy.
b) Vẽ tia đối Oy’ của tia Oy:
- Đặt thước sao cho mép thước dọc theo tia Oy.
- Kéo dài phía đầu kia của tia Oy lấy tia Oy’ (hai tia Oy và Oy’ cùng nằm trên đường thẳng yy’).
Khi đó, hai tia Oy’ là tia đối của tia Oy (như hình vẽ).
c) Quan sát hình đã vẽ ta thấy: Hai tia Ox và Oz nằm về hai phía của đường thẳng yy’.
Lời giải:
Ta có: Góc xOy có đỉnh góc là đỉnh O và hai cạnh của góc là Ox và Oy.
Góc mOn có đỉnh góc là đỉnh O và hai cạnh của góc là Om và On
Ta thấy hai góc xOy và mOn có đỉnh O chung, nhưng lại không có cạnh chung.
Do đó, hai góc xOy và mOn không phải hai góc kề nhau.
Lời giải:
Góc mOn có đỉnh là O và hai cạnh là Om; On.
Góc pOn có đỉnh là O và hai cạnh là On; Op.
Do đó, góc mOn và góc pOn có đỉnh O chung và cạnh chung On.
Lại có: Om; Op nằm về hai phía của đường thẳng chứa On.
Do đó, hai góc mOn và pOn kề nhau.
Khi đó, .
Vậy hai góc mOn và pOn kề nhau và .
2. Hai góc bù nhau, hai góc kề bù
Hoạt động 3 trang 92 Toán lớp 7 Tập 1:Tìm số đo của góc 110o và góc 70o.
Lời giải:
Vẽ hai góc có số đo 110° và 70°.
* Giả sử :
Bước 1: Vẽ một điểm O trên giấy rồi vẽ một tia Ox tùy ý.
Bước 2: Đặt thước đo góc sao cho tâm O của thước trùng vào điểm O và vạch chỉ số 0trùng với tia Ox.
Bước 3: Đánh dấu một điểm trên vạch chia độ của thước tương ứng với số chỉ 100 độ. Nối O với vị trí đó, ta có tia Oy. Khi đó:
* Giả sử :
Bước 1: Chấm điểm O trên giấy, vẽ một tia Oa tuỳ ý.
Bước 2: Đặt thước đo góc sao cho tâm O của thước trùng vào điểm O và vạch chỉ số 0trùng với tia Oa.
Bước 3: Đánh dấu một điểm trên vạch chia độ của thước tương ứng với số chỉ 70 độ. Nối O với vị trí đó, ta có tia Ob. Khi đó, .
Ta có hình vẽ:
Vậy trong hình vẽ trên, góc xOy có số đo 110° và góc aOb có số đo 70°.
Tổng số đo hai góc đó là:
Vậy tổng số đo của góc 110° và góc 70° bằng 180°.
a) Hai góc xOt và yOt có kề nhau hay không?
Lời giải:
a) Ta có: Góc xOt có đỉnh là O; hai cạnh là Ot; Ox
Góc yOt có đỉnh là O; hai cạnh là Oy; Ot.
Do đó, hai góc xOt và yOt có chung đỉnh O, chung cạnh Ot
Mặt khác, hai cạnh Ox và Oy nằm về hai phía của tia Ot.
Vì vậy, hai góc xOt và yOt kề nhau.
b) Hai góc xOt và yOt kề nhau nên:
.
Mà Ox; Oy đối nhau nên
Do đó
Vậy .
Luyện tập 3 trang 93 Toán lớp 7 Tập 1: Tính góc xOt trong Hình 12.
Lời giải:
Vì hai góc xOt và yOt có chung đỉnh O, chung cạnh Ot và hai cạnh Ox và Oy nằm về hai phía của tia Ot.
Do đó, hai góc xOt và yOt kề nhau.
Lại có tia Ox là tia đối của tia Oy
Nên hai góc xOt và yOt kề bù
Ta có, .
Hay
Suy ra,
Vậy .
3. Hai góc đối đỉnh
a) Cạnh Ox của góc xOz là hai tia đối của cạnh nào của góc yOt
b) Cạnh Oz của góc xOz là hai tia đối của cạnh nào của góc yOt.
Lời giải:
a)
Cạnh Ox của là tia đối của cạnh Oy của vì theo đề bài tia Ox và tia Oy là hai tia đối nhau.
b) Cạnh Oz của là tia đối của cạnh Ot của vì theo đề bài tia Oz và tia Ot là hai tia đối nhau.
Hoạt động 6 trang 94 Toán lớp 7 Tập 1:Quan sát Hình 15 và giải thích vì sao:
a) Hai góc xOy và yOz là hai góc kề bù;
b) Hai góc yOz và zOt là hai góc kề bù;
Lời giải:
a) Góc xOy có đỉnh là O và hai cạnh là Ox; Oy.
Góc yOz có đỉnh là O và hai cạnh là Oy; Oz.
Mặt khác: Ox; Oz nằm về hai phía so với đường thẳng chứa Oy
Nên hai góc xOy và yOz kề nhau (1)
Suy ra .
Mà (do hình vẽ xz là một đường thẳng) nên .
Do đó, hai góc xOy và yOz bù nhau (2)
Từ (1) và (2) suy ra: Hai góc xOy và yOz là hai góc kề bù.
b) Góc yOz có đỉnh là O và hai cạnh là Oz; Oy.
Góc zOt có đỉnh là O và hai cạnh là Ot; Oz.
Mặt khác: Oy; Ot nằm về hai phía so với đường thẳng chứa Oz
Nên hai góc yOz và zOt kề nhau (3)
Suy ra .
Mà (do hình vẽ yt là một đường thẳng) nên .
Do đó, hai góc yOz và zOt bù nhau (4)
Từ (3) và (4) suy ra: Hai góc yOz và zOt là hai góc kề bù.
c) Vì và .
Nên .
Suy ra (ta trừ cả hai vế cho )
Do đó .
Vậy và .
Luyện tập 4 trang 94 Toán lớp 7 Tập 1:Tìm số đo x trong Hình 17.
Lời giải:
Đặt tên các đường thẳng ac, bd và eg cùng đi qua điểm O (như hình vẽ).
Vì ge và ac là hai đường thẳng vuông góc với nhau nên
Ta có: Góc aOb có đỉnh là O và hai cạnh là Oa; Ob.
Góc bOg có đỉnh là O và hai cạnh là Ob và Og.
Do đó, aOb và bOg có đỉnh O và cạnh Ob chung.
Lại có: Oa; Ob nằm về hai phía so với đường thẳng chứa Ob nên aOb và bOg kề nhau
Khi đó:
Hay
Suy ra,
Lại có: Ob là tia đối của tia Od; Og là tia đối của tia Oe nên góc bOg đối đỉnh với góc dOe.
Suy ra,
Vậy x = 60°.
Bài tập
Bài 1 trang 94, 95 Toán lớp 7 Tập 1:
a) Tìm hai góc kề nhau trong mỗi hình 18a, 18b:
b) Tìm hai góc kề bù trong Hình 19.
c) Tìm hai góc đối đỉnh trong mỗi hình 20a, 20b, 20c, 20d:
Lời giải:
a) Xét hình 18a:
Hai góc iAj và jAk có chung đỉnh A, chung cạnh Aj và hai cạnh Ai và Ak nằm về hai phía của đường thẳng chứa Aj.
Do đó, hai góc iAj và jAk kề nhau.
Xét hình 18b:
- Hai góc hBg và gBf có chung đỉnh B, chung cạnh Bg và hai cạnh Bh và Bf nằm về hai phía của đường thẳng chứa Bg.
Do đó, hai góc hBg và gBf kề nhau.
- Hai góc gBf và eBf có chung đỉnh B, chung cạnh Bf và hai cạnh Bg và Be nằm về hai phía của đường thẳng chứa Bf.
Do đó, hai góc gBf và eBf kề nhau.
- Hai góc hBg và gBe có chung đỉnh B, chung cạnh Bg và hai cạnh Be và Bh nằm về hai phía của đường thẳng chứa Bg.
Do đó, hai góc hBg và gBe kề nhau.
- Hai góc eBf và hBf có chung đỉnh B, chung cạnh Bf và hai cạnh Be và Bh nằm về hai phía của đường thẳng chứa Bf.
Do đó, hai góc eBf và hBf kề nhau.
Vậy trong hình 18a: hai góc iAj và jAk kề nhau;
Trong hình 18b: hai góc hBg và gBf kề nhau, hai góc gBf và eBf kề nhau, hai góc hBg và gBe kề nhau, hai góc eBf và hBf kề nhau.
b) Xét Hình 19:
- Góc xOy và góc yOu là hai góc kề nhau và .
Nên hai góc xOy và yOu là hai góc kề bù.
- Góc xOz và góc zOu là hai góc kề nhau và .
Nên hai góc xOz và zOu là hai góc kề bù.
- Góc xOt và góc tOu là hai góc kề nhau và .
Nên hai góc xOt và tOu là hai góc kề bù.
Vậy trong Hình 19 góc xOy và góc yOu, góc xOz và góc zOu, góc xOt và góc tOu là những cặp góc kề bù.
c) Xét hình 20a:
Ta thấy: Mỗi cạnh của góc mHn không phải là cạnh đối của góc pKq.
Do đó, góc mHn và góc pKq không đối đỉnh.
- Xét Hình 20b:
Cạnh Iz của góc zIu và cạnh Iz’ của góc z’Iv đối nhau nhưng cạnh Iu của góc zIu và cạnh Iv của góc z’Iv không đối nhau.
Do đó, góc zIu và z’Iv không đối đỉnh.
- Xét Hình 20c:
+ Cạnh Ox của góc xOy và cạnh Ox’ của góc x’Oy’ đối nhau và cạnh Oy của góc xOy và cạnh Oy’ của góc x’Oy’ đối nhau.
Nên hai góc xOy và góc x’Oy’ đối đỉnh.
+ Cạnh Ox của góc xOy’ và cạnh Ox’ của góc x’Oy đối nhau và cạnh Oy’ của góc xOy’ và cạnh Oy của góc x’Oy đối nhau.
Nên hai góc xOy’ và góc x’Oy đối đỉnh.
- Xét Hình 20d:
Mỗi tia Si; St; Sr; Sj đều không có tia đối nào trong hình nên Hình 20d không có cặp góc nào đối đỉnh.
Vậy hai góc đối đỉnh trong Hình 20c là góc xOy và góc x’Oy’, góc xOy’ và góc x’Oy còn các Hình 20a, 20b, và 20d không có cặp góc đối đỉnh.
Bài 2 trang 95 Toán lớp 7 Tập 1:Quan sát Hình 21 và chỉ ra:
b) Hai góc kề bù (khác góc bẹt);
c) Hai góc đối đỉnh (khác góc bẹt);
Lời giải:
a) Các góc kề nhau có trong Hình 21 là: góc AFG và góc EFG; góc BGF và góc BGC; góc BGF và góc EGF; góc EGF và góc EGC; góc EGC và góc BGC; góc BCG và góc DCG; góc ABE và EBD, góc AEB và góc BED.
b) Hai góc kề bù (khác góc bẹt) trong Hình 21 là: góc AFG và góc EFG, góc BCG và DCG, góc BGF và góc BGC, góc BGF và góc EGF, góc EGF và góc EGC, góc EGC và góc BGC.
c) Hai góc đối đỉnh (khác góc bẹt và góc không) trong Hình 21 là: góc BGF và góc EGC, góc EGF và góc BGC.
Bài 3 trang 95 Toán lớp 7 Tập 1:Tìm số đo:
Lời giải:
a)
Ta có: Góc mOn có đỉnh O và cạnh Om; On; Góc nOp có đỉnh O và cạnh On; Op.
Mặt khác, Om; Op nằm về hai phía so với đường thẳng chứa On.
Do đó, trong Hình 22a: hai góc mOn và nOp là hai góc kề nhau.
Ta có: .
Thay số: .
Vậy .
b)
Ta có: Góc qPr có đỉnh là P và hai cạnh là Pq và Pr; Góc rPs có đỉnh là P và hai cạnh Pr và Ps.
Lại có Pq và Ps nằm về hai phía so với đường thẳng chứa Pr.
Do đó qPr và rPs là hai góc kề nhau.
Mặt khác, ta thấy Pq và Ps là hai tia đối nhau nên
Do đó, trong Hình 22b: hai góc qPr và rPs là hai góc kề bù
Ta có: .
Thay số, .
Suy ra,
Vậy .
c) Trong Hình 22c:
- Hai góc zQt và z’Qt’ là hai góc đối đỉnh vì Ot là tia đối của tia Ot’ và Oz là tia đối của tia Qz’.
Nên .
Do đó x = 41°.
- Hai góc z’Qt và z’Qt’ là hai góc kề bù nên:
.
Thay số, .
Do đó .
Do đó y = 139°.
Vậy x = 41° và y = 139°.
Lời giải:
Trong Hình 23, nếu ta coi mỗi thanh chắn vòm cửa là một cạnh của góc thì ở đây ta sẽ có 4 góc nhỏ và dự đoán bốn góc đó bằng nhau.
Lại có, thanh gỗ dưới của vòm cửa cho ta hình ảnh của góc bẹt nên bốn góc nhỏ đó có tổng bằng 180o.
Do đó, số đo mỗi góc bằng khoảng: 180° : 4 = 45°.
Vậy mỗi góc tạo bởi hai thanh chắn vòm cửa đó khoảng 45 độ.