Với giá trị nào của tham số m thì phương trình có hai nghiệm phân biệt

Lời giải Câu 8 trang 20 SBT Toán 10 sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 10.

252


Giải SBT Toán 10 Chân trời sáng tạo Bài tập cuối chương 7

Câu 8 trang 20 SBT Toán 10 Tập 2: Với giá trị nào của tham số m thì phương trình2m+6x2+4mx+3=0 có hai nghiệm phân biệt?

A. m<32 hoặc m > 3;

B. 32<m<3;

C. m < - 3  hoặc 3<m<32 hoặc m > 3;

D. 3<m<32 hoặc m > 3.

Lời giải:

Đáp án đúng là A

+) 2m + 6 = 0 ⇔ m = –3, khi đó phương trình trở thành –12x + 3 = 0 ⇒ x = 14. Suy ra phương trình chỉ có một nghiệm duy nhất. Do đó không thỏa mãn.

+) 2m + 6 ≠ 0 ⇔ m ≠ –3

Khi đó phương trình 2m+6x2+4mx+3=0có hai nghiệm phân biệt khi và chỉ khi

∆ = (4m)2 – 4.3.(2m + 6) > 0 hay 2m2 – 3m – 9 > 0

Tam thức bậc hai f ( x ) = 2m2 – 3m – 9 có hai nghiệm phân biệt x1 = 3 và x2 = 32,

a = 2 > 0 nên f ( x ) > 0 với x < 32 hoặc x > 3 (2)

Từ điều kiện (1) và (2) suy ra m < - 3  hoặc 3<m<32 hoặc m > 3.

Vậy đáp án đúng là C.

Bài viết liên quan

252