Giải các bất phương trình bậc hai sau: Bài 3 trang 21 SBT Toán 10 Tập 2

Lời giải Bài 3 trang 21 SBT Toán 10 sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 10.

219


Giải SBT Toán 10 Chân trời sáng tạo Bài tập cuối chương 7

Bài 3 trang 21 SBT Toán 10 Tập 2: Giải các bất phương trình bậc hai sau:

Sách bài tập Toán 10 Bài tập cuối chương 7 - Chân trời sáng tạo (ảnh 1)

Lời giải:

a) x210x+240;

Tam thức bậc hai f ( x ) = x2 – 10x + 24 có ∆ = (– 10)2 – 4.1.24 = 4 > 0 suy ra f(x) có hai nghiệm phân biệt x1 = 6 và x2 = 4 và a = 1 > 0 nên f ( x ) > 0 với x ≤ 4 hoặc x ≥ 6.

Vậy bất phương trình đã cho có tập nghiệm S = (– ∞; 4] ∪ [6; +∞)

b) 4x2+28x490;

Tam thức bậc hai f ( x ) = –4x2 + 28x – 49 có ∆ = 282 – 4.(– 4).(– 49) = 0 suy ra f(x) có một nghiệm x = 72 , a = –4 < 0 nên f ( x ) ≤  0 với mọi x ∈ ℝ.

Vậy bất phương trình đã cho có tập nghiệm S = ℝ.

c) x25x+1>0;

Tam thức bậc hai f ( x ) = x2 – 5x + 1 có ∆ = (–5)2 – 4.1.1 = 21 suy ra f(x) có hai nghiệm phân biệt x1 = 5+212 và x2 = 5-212, a = 1 > 0 nên f ( x ) > 0 với x < 5212 hoặc x > 5+212.

Vậy bất phương trình đã cho có tập nghiệm S = ;52125+212;+

d) 9x224x+160;

Tam thức bậc hai f ( x ) = 9x2 – 24x +16 có ∆ = (–24)2 – 4.9.16 = 0 suy ra f(x) có một nghiệm x = 43 , a = 9 > 0 nên f ( x ) ≤  0 khi x = 43.

Vậy bất phương trình đã cho có tập nghiệm S = 43

e) 15x2x2<0;

Tam thức bậc hai f ( x ) = 15x2 – x – 2 có ∆ = (–1)2 – 4.15.( –2) = 121 suy ra f(x) có hai nghiệm phân biệt x1 = 25 và x2 = -13, a = 15 > 0 nên f ( x ) < 0 với 13 < x < 25.

Vậy bất phương trình đã cho có tập nghiệm S = 13;25

g) x2+8x17>0;

Tam thức bậc hai f ( x ) = –x2 + 8x – 17 có ∆ = 82 – 4.( –1).( –17) = –4 < 0 , a = –1 < 0 nên f ( x ) âm với mọi x ∈ ℝ.

Vậy bất phương trình vô nghiệm.

h) 25x2+10x1<0;

Tam thức bậc hai f ( x ) = –25x2 + 10x – 1 có ∆ = 102 – 4.( –25).( –1) = 0  suy ra f(x) có một nghiệm x = 15 , a = –25 < 0 nên f ( x ) < 0 khi x ≠ 15.

Vậy bất phương trình đã cho có tập nghiệm S = ℝ \ 15.

i) 4x2+4x+70.

Tam thức bậc hai f ( x ) = 4x2 + 4x + 7 có ∆ = 42 – 4.4.7 = –96 < 0 , a = 4 > 0 nên f ( x ) dương với mọi x ∈ ℝ.

Vậy bất phương trình vô nghiệm.

Bài viết liên quan

219