Viết phương trình đường tròn (C) trong mỗi trường hợp sau: a) (C) có tâm I(- 6; 2) bán kính 7
Lời giải Bài 54 trang 89 SBT Toán 10 sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 10.
Bài 54 trang 89 SBT Toán 10 Tập 2: Viết phương trình đường tròn (C) trong mỗi trường hợp sau:
a) (C) có tâm I(- 6; 2) bán kính 7.
b) (C) có tâm I(3; - 7) và đi qua điểm A(4; 1)
c) (C) có tâm I(1; 2) và tiếp xúc với đường thẳng 3x + 4y + 19 = 0.
d) (C) có đường kính AB với A(- 2; 3) và B(0; 1)
e) (C) có tâm I thuộc đường thẳng và (C) tiếp xúc với hai đường thẳng
Lời giải:
a) Phương trình (C) có tâm I(- 6; 2) bán kính 7 là: (x + 6)2 + (y – 2)2 = 72.
b) Bán kính của đường tròn (C) là: IA
Phương trình đường tròn là: .
c) Bán kính của đường tròn chính bằng khoảng cách từ I đến đường thẳng d: 3x + 4y + 19 = 0.
Suy ra
Phương trình đường tròn là: .
d) Gọi I là tâm của đường tròn thì IA = R và I là trung điểm của AB
Suy ra I(-1; 2),
Phương trình đường tròn là: .
e) Tâm I thuộc đường thẳng nên I(1 + t; 1 – t)
Đường tròn có 2 tiếp tuyến nên khoảng cách từ I đến 2 tiếp tuyến bằng nhau và bằng bán kính của đường tròn.
Ta có:
Với t = thì I và R = d(I; ∆2) = . Khi đó phương trình đường tròn là: .
Với t = thì I và R = d(I; ∆2) = . Khi đó phương trình đường tròn là: .
Xem thêm các bài giải sách bài tập Toán 10 bộ sách Cánh diều hay, chi tiết khác:
Bài 47 trang 88 SBT Toán 10 Tập 2: Phương trình nào sau đây không là phương trình đường tròn?...
Bài 54 trang 89 SBT Toán 10 Tập 2: Viết phương trình đường tròn (C) trong mỗi trường hợp sau: a) (C) có tâm I(- 6; 2) bán kính 7...
Bài 55 trang 89 SBT Toán 10 Tập 2: Lập phương trình đường thẳng ∆ là tiếp tuyến của đường tròn trong mỗi trường hợp sau: a) ∆ tiếp xúc (C) tại điểm có tung độ bằng 3...
Bài 56 trang 89 SBT Toán 10 Tập 2: Trong mặt phẳng tọa độ Oxy, cho đường tròn và điểm A(- 1; 3)...
Bài viết liên quan
- Giải Sách bài tập Toán 10 Cánh diều Bài 3: Phương trình đường thẳng
- Giải Sách bài tập Toán 10 Cánh diều Bài 4: Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng
- Giải Sách bài tập Toán 10 Cánh diều Bài 5: Phương trình đường tròn
- Giải Sách bài tập Toán 10 Cánh diều Bài 6: Ba đường conic
- Giải Sách bài tập Toán 10 Cánh diều Bài tập cuối chương 7