Tìm k sao cho phương trình: x^2 + y^2 – 6x + 2ky + 2k + 12 = 0 là phương trình đường tròn
Lời giải Bài 53 trang 89 SBT Toán 10 sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 10.
Bài 53 trang 89 SBT Toán 10 Tập 2: Tìm k sao cho phương trình: x2 + y2 – 6x + 2ky + 2k + 12 = 0 là phương trình đường tròn.
Lời giải:
Ta biến đổi như sau:
x2 + y2 – 6x + 2ky + 2k + 12 = 0
⇔ (x – 3)2 + (y + k)2 = k2 – 2k – 3
Để phương trình trên là phương trình đường tròn thì
k2−2k−3>0⇔[k<−1k>3
Vậy k < – 1 hoặc k > 3.
Xem thêm các bài giải sách bài tập Toán 10 bộ sách Cánh diều hay, chi tiết khác:
Bài 47 trang 88 SBT Toán 10 Tập 2: Phương trình nào sau đây không là phương trình đường tròn?...
Bài 54 trang 89 SBT Toán 10 Tập 2: Viết phương trình đường tròn (C) trong mỗi trường hợp sau: a) (C) có tâm I(- 6; 2) bán kính 7...
Bài 55 trang 89 SBT Toán 10 Tập 2: Lập phương trình đường thẳng ∆ là tiếp tuyến của đường tròn (C):(x+2)2+(y−3)2=4 trong mỗi trường hợp sau: a) ∆ tiếp xúc (C) tại điểm có tung độ bằng 3...