Giải Toán 10 (Kết nối tri thức) Bài ôn tập chương 2
Hoidap.vietjack.com trân trọng giới thiệu: lời giải bài tập Toán lớp 10 Bài ôn tập chương 2 sách Kết nối tri thức hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 10 Bài ôn tập chương 2. Mời các bạn đón xem:
Giải bài tập Toán 10 Bài ôn tập chương 2
A. Trắc nghiệm
Giải Toán 10 trang 31 Tập 1
Bài 2.7 trang 31 Toán 10 Tập 1: Bất phương trình nào sau đây là bất phương trình bậc nhất hai ẩn?
A. x + y > 3;
B. x2 + y2 ≤ 4;
C. (x – y)(3x + y) ≥ 1;
D. y3 – 2 ≤ 0.
Lời giải
Đáp án đúng là A
Vì x + y > 3 có dạng ax + by > c với a = 1; b = 1; c = 3.
Bài 2.8 trang 31 Toán 10 Tập 1: Cho bất phương trình 2x + y > 3. Khẳng định nào dưới đây là đúng?
A. Bất phương trình đã cho có nghiệm duy nhất.
B. Bất phương trình đã cho vô nghiệm.
C. Bất phương trình đã cho có vô số nghiệm.
D. Bất phương trình đã cho có tập nghiệm là .
Lời giải
Đáp án đúng là C
Có vô số cặp số (x0; y0) thỏa mãn 2x0 + y0 > 3.
Do đó bất phương trình 2x + y > 3 có vô số nghiệm
Bài 2.9 trang 31 Toán 10 Tập 1: Hình nào sau đây biểu diễn miền nghiệm của bất phương trình x – y < 3?
Lời giải
Đáp án đúng là D
Ta vẽ đường thẳng x – y = 3
Ta có: 0 – 0 = 0 < 3. Do đó, miền nghiệm của bất phương trình x – y < 3 là nửa mặt phẳng có bờ là đường thẳng x – y = 3 có chứa điểm O(0; 0) không kể biên.
Bài 2.10 trang 31 Toán 10 Tập 1: Hệ bất phương trình nào sau đây là hệ bất phương trình bậc nhất hai ẩn?
A.
B.
C.
D.
Lời giải
Đáp án đúng là A
Vì cả hai bất phương trình của hệ ở đáp án A đều là bất phương trình bậc nhất hai ẩn.
Giải Toán 10 trang 32 Tập 1
Bài 2.11 trang 32 Toán 10 Tập 1: Cho hệ bất phương trình Điểm nào sau đây thuộc miền nghiệm của hệ bất phương trình đã cho?
A. (0;0);
B. (-2;1);
C. (3;-1);
D. (-3;1).
Lời giải
Đáp án đúng là D
Thay tọa độ từng điểm và hệ bất phương trình ta thấy đáp án D đúng
B. Tự luận
Bài 2.12 trang 32 Toán 10 Tập 1: Biểu diễn miền nghiệm của bất phương trình trên mặt phẳng tọa độ.
Lời giải
Vẽ đường thẳng d: – x + 5y = 2.
Ta có: -0 + 5.0 = 0 < 2.
Do đó, miền nghiệm của bất phương trình -x + 5y 2 là nửa mặt phẳng có bờ là đường thẳng –x + 5y = 2, tính cả biên và không chứa điểm O(0; 0) (miền không bị gạch).
Bài 2.13 trang 32 Toán 10 Tập 1: Biểu diễn miền nghiệm của hệ bất phương trình: trên mặt phẳng tọa độ.
Lời giải
+) Xác định miền nghiệm D1 của bất phương trình x + y < 1.
- Ta vẽ đường thẳng d: x + y = 1.
- Ta có: 0 + 0 = 0 < 1.
Do đó miền nghiệm D1 của bất phương trình x + y < 1 là nửa mặt phẳng có bờ là đường thẳng d (không kể đường thẳng d) chứa gốc tọa độ O(0; 0).
+) Xác định miền nghiệm D2 của bất phương trình 2x – y ≥ 3.
- Vẽ đường thẳng d’: 2x – y = 3.
- Ta có: 2.0 – 0 = 0 < 3.
Do đó miền nghiệm D2 của bất phương trình 2x – y ≥ 3 là nửa mặt phẳng có bờ là đường thẳng d’ (kể cả đường thẳng d’) và không chứa gốc tọa độ O(0; 0).
Vậy miền nghiệm của hệ bất phương trình đã cho là phần không bị gạch chéo trong hình vẽ, không kể biên là đường thẳng d và kể cả biên là đường thẳng d’.
Bài 2.14 trang 32 Toán 10 Tập 1: Biểu diễn miền nghiệm của hệ bất phương trình trên mặt phẳng tọa độ.
Từ đó tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức F(x;y) = - x – y với (x;y) thỏa mãn hệ trên.
Lời giải
+) Ta biểu diễn miền nghiệm của hệ bất phương trình
+ Xác định miền nghiệm của bất phương trình y – 2x ≤ 2.
- Vẽ đường thẳng y – 2x = 2
- Ta có: 0 – 2.0 = 0 < 2.
Do đó, miền nghiệm của bất phương trình y – 2x ≤ 2 là nửa mặt phẳng có bờ là đường thẳng y – 2x = 2 (tính cả đường thẳng đó) và chứa điểm O(0; 0).
+ Xác định miền nghiệm của bất phương trình y ≤ 4.
- Vẽ đường thẳng y = 4.
- Ta có 3 ≤ 4
Do đó, miền nghiệm của bất phương trình y ≤ 4 là nửa mặt phẳng có bờ là đường thẳng y = 4 (tính cả đường thẳng đó) và chứa điểm (0; 3).
+ Xác định miền nghiệm của bất phương trình x ≤ 5.
- Vẽ đường thẳng x = 5.
- Ta có 3 ≤ 5
Do đó, miền nghiệm của bất phương trình x ≤ 5 là nửa mặt phẳng có bờ là đường thẳng x = 5 (tính cả đường thẳng đó) và chứa điểm (3; 0).
+ Xác định miền nghiệm của bất phương trình x + y ≤ – 1.
- Vẽ đường thẳng x + y = -1
- Ta có: 0 + 0 = 0 > -1.
Do đó, miền nghiệm của bất phương trình x + y ≥ -1 là nửa mặt phẳng có bờ là đường thẳng x + y = -1 (tính cả đường thẳng đó) và không chứa điểm O(0; 0).
Vậy miền nghiệm của hệ bất phương trình đã cho là miền tứ giác ABCD (miền tô màu vàng) với tọa độ các đỉnh A(1; 4); B(5; 4); C(5; – 6); D(– 1; 0)
Giá trị lớn nhất và giá trị nhỏ nhất của F(x; y) = – x – y được xác định với (x; y) là tọa độ của một trong bốn đỉnh A; B; C; D.
F(1; 4) = – 1 – 4 = – 5
F(5; 4) = – 5 – 4 = – 9
F(5; – 6) = – 5 – (– 6) = 1
F(– 1; 0) = – (– 1) – 0 = 1
Vậy giá trị lớn nhất của biểu thức F là 1 tại (x;y) = (-1;0) hoặc (x;y) = (5;-6) và giá trị nhỏ nhất của biểu thức F là -9 tại (x;y) = (5;4)
Bài 2.15 trang 32 Toán 10 Tập 1: Bác An đầu tư 1,2 tỉ đồng vào ba loại trái phiếu: trái phiếu chính phủ với lãi suất 7% một năm, trái phiếu ngân hàng với lãi suất 8% một năm và trái phiếu doanh nghiệp rủi ro cao với lãi suất 12% một năm. Vì lí do giảm thuế, bác An muốn số tiền đầu tư trái phiếu chính phủ gấp ít nhất 3 lần số tiền đầu tư trái phiếu ngân hàng. Hơn nữa, để giảm thiểu rủi ro, bác An đầu tư không quá 200 triệu đồng cho trái phiếu doanh nghiệp. Hỏi bác An nên đầu tư mỗi loại trái phiếu bao nhiêu tiền để lợi nhuận thu được sau một năm là lớn nhất?
Lời giải
Gọi số tiền bác An đầu tư cho trái phiếu chính phủ, trái phiếu ngân hàng lần lượt là x, y (triệu đồng) (0 ≤ x, y ≤ 1 200).
Khi đó bác An đầu tư cho trái phiếu doanh nghiệp là 1 200 – x – y (triệu đồng)
Vì lí do giảm thuế, bác An muốn số tiền đầu tư trái phiếu chính phủ gấp ít nhất 3 lần số tiền đầu tư trái phiếu ngân hàng nên ta có: x ≥ 3y hay x – 3y ≥ 0.
Để giảm thiểu rủi ro, bác An đầu tư không quá 200 triệu đồng cho trái phiếu doanh nghiệp nên ta có: 1 200 – x – y ≤ 200 hay x + y ≥ 1 000.
Từ đó ta có hệ bất phương trình: .
Miền nghiệm của hệ bất phương trình là miền tứ giác ABCD với tọa độ các điểm
A(1 000;0), B(750;250), C(1 200;400), D(1 200;0).
Lợi nhuận bác An thu được là: F(x;y) = 7%x + 8%y + 12%(1200 – x – y) = 144 – 0,05x – 0,04y (triệu đồng)
Tính giá trị của F(x;y) tại các điểm A, B, C, D, ta được:
F(1 000;0) = 144 – 0,05.1 000 – 0,04.0 = 94;
F(750;250) = 144 – 0,05.750 – 0,04.250 = 96,5;
F(1 200;400) = 144 – 0,05.1 200 – 0,04.400 = 68;
F(1 200;0) = 144 – 0,05.1 200 – 0,04.0 = 84;
Suy ra F(x; y) lớn nhất bằng 96,5 khi x = 750, y = 250.
Vậy bác An nên đầu tư 750 triệu đồng vào trái phiếu chính phủ, 250 triệu đồng vào trái phiếu ngân hàng và 200 triệu đồng vào trái phiếu doanh nghiệp để lợi nhuận thu được là lớn nhất.
Bài 2.16 trang 32 Toán 10 Tập 1: Một công ty dự định chi tối đa 160 triệu đồng cho quảng cáo một sản phẩm mới trong một tháng trên các đài phát thanh và truyền hình. Biết cùng một thời lượng quảng cáo, số người mới quan tâm đến sản phẩm trên truyền hình gấp 8 lần trên đài phát thanh, tức là quảng cáo trên truyền hình có hiệu quả gấp 8 lần trên đài phát thanh.
Đài phát thanh chỉ nhận được quảng cáo có tổng thời lượng trong một tháng tối đa là 900 giây với chi phí là 80 nghìn đồng/giây. Đài truyền hình chỉ nhận được các quảng cáo có tổng thời lượng tối đa trong một tháng tối đa là 360 giây với chi phí là 400 nghìn đồng/giây. Công ty cần đặt thời gian quảng cáo trên các đài phát thanh và truyền hình như thế nào để hiệu quả nhất?
Gợi ý: Nếu coi hiệu quả khi quảng cáo 1 giây trên đài phát thanh là 1 (đơn vị) thì hiệu quả khi quảng cáo 1 giây trên đài truyền hình là 8 (đơn vị). Khi đó hiệu quả quảng cáo x (giây) trên đài phát thanh và y (giây) trên truyền hình là F(x; y) = x + 8y. Ta cần tìm giá trị lớn nhất của hàm F(x; y) với x, y thỏa mãn các điều kiện trong đề bài.
Lời giải
Gọi x (giây) là thời lượng quảng cáo trong một tháng công ty đặt trên đài truyền hình và y (giây) là thời lượng quảng cáo trong một tháng công ty đặt trên đài phát thanh. (0 ≤ x ≤ 360, 0 ≤ y ≤ 900).
Chi phí công ty chi trả cho quảng cáo trong một tháng là: 400x + 80y (nghìn đồng)
Vì công ty dự định chi tối đa 160 triệu đồng cho quảng cáo một sản phẩm mới nên ta có:
400x + 80y ≤ 160 000 hay 5x + y ≤ 2 000.
Khi đó ta có hệ bất phương trình:
Miền nghiệm của hệ bất phương trình là ngũ giác OABCD với tọa độ các điểm là O(0;0), A(0;900), B(220;900), C(360;200), D(360;0).
Nếu coi hiệu quả khi quảng cáo 1 giây trên đài phát thanh là 1 (đơn vị) thì hiệu quả khi quảng cáo 1 giây trên đài truyền hình là 8 (đơn vị). Khi đó hiệu quả quảng cáo x (giây) trên đài truyền hình và y (giây) trên đài phát thanh là F(x; y) = 8x + y.
Tính giá trị F(x; y) tại các điểm O, A, B, C, D, ta có:
Ta có: F(0; 0) = 8.0 + 0 = 0;
F(0; 900) = 8.0 + 900 = 900;
F(220; 900) = 8.220 + 900 = 2 660;
F(360; 200) = 8.360 + 200 = 3 080.
F(360; 0) = 8.360 + 0 = 2 880.
Suy ra F(x; y) đạt giá trị lớn nhất bằng 3 080 tại x = 360, y = 200.
Vậy công ty cần đặt thời gian quảng cáo 200 giây trên đài phát thanh và 360 giây trên đài truyền hình để đạt hiệu quả cao nhất.
Bài viết liên quan
- Giải Toán 10 (Kết nối tri thức) Bài 3: Bất phương trình bậc nhất hai ẩn
- Giải Toán 10 (Kết nối tri thức) Bài 4: Hệ bất phương trình bậc nhất hai ẩn
- Nhân ngày Quốc tế Thiếu nhi 1 – 6, một rạp chiếu phim phục vụ các khán giả của một bộ phim hoạt hình. Vé được bán ra có hai loại
- Trong tình huống mở đầu, gọi x là số vé loại 1 bán được và y là số vé loại 2 bán được
- Cặp số (x; y) = (100; 100) thỏa mãn bất phương trình bậc nhất hai ẩn nào trong hai bất phương trình thu được ở HĐ1