Trắc nghiệm Toán học 8 Các trường hợp đồng dạng của tam giác có đáp án năm 2021 - 2022

Bộ câu hỏi trắc nghiệm Toán học lớp 8 có đáp án, chọn lọc năm 2021 – 2022 mới nhất gồm các câu hỏi trắc nghiệm đầy đủ các mức độ nhận biết, thông hiểu, vận dụng, vận dung cao. Hy vọng với tài liệu trắc nghiệm Toán học lớp 8 sẽ giúp học sinh củng cố kiến thức, ôn tập và đạt điểm cao trong các bài thi trắc nghiệm môn Toán học 8

497
  Tải tài liệu

Trắc nghiệm Toán học 8 Các trường hợp đồng dạng của tam giác

Bài 1: Cho tam giác ABC có M là trung điểm của AC. Lấy điểm D đối xứng với B qua M . Khi đó :

A. Tứ giác ABCD là hình thoi

B. AC = BD

C. ΔAMB = ΔCMD theo tỉ số đồng dạng k = 1

D. Bài tập Các trường hợp đồng dạng của tam giác | Lý thuyết và Bài tập Toán 8 có đáp án

Xét Δ AMB và ΔCMD có:

AM = MC ( vì M là trung điểm của AC)

∠AMB = ∠CMD = 90o

BM = MD ( vì D đối xứng với B qua M)

Suy ra: Δ AMB = ΔCMD ( c.g.c)

Suy ra: Hai tam giác này cũng đồng dạng với nhau và tỉ số đồng dạng là:

D. Bài tập Các trường hợp đồng dạng của tam giác | Lý thuyết và Bài tập Toán 8 có đáp án

Chọn đáp án C

Bài 2: Cho hai tam giác Δ RSK và Δ PQM có: RS/PQ = RK/PM = SK/QM thì:

   A. Δ RSK ∼ Δ PQM

   B. Δ RSK ∼ Δ MPQ

   C. Δ RSK ∼ Δ QPM

   D. Δ RSK ∼ Δ QMP

Ta có: RS/PQ = RK/PM = SK/QM ⇒ Δ RSK ∼ Δ PQM

Chọn đáp án A.

Bài 3: Nếu Δ RSK ∼ Δ PQM có: RS/PQ = RK/PM = SK/QM thì

   A. RSKˆ = PQMˆ

   B. RSKˆ = PMQˆ

   C. RSKˆ = MPQˆ

   D. RSKˆ = QPMˆ

Ta có Δ RSK ∼ Δ PQM ⇔ Bài tập Các trường hợp đồng dạng của tam giác | Lý thuyết và Bài tập Toán 8 có đáp án

Chọn đáp án A.

Bài 4: Chọn câu trả lời đúng?

   A. Δ ABC, Δ DEF;AB/DE = AC/DF;Bˆ = Eˆ ⇒ Δ ABC ∼ Δ DEF

   B. Δ ABC, Δ DEF;AB/DE = AC/DF;Cˆ = Fˆ ⇒ Δ ABC ∼ Δ DEF

   C. Δ ABC, Δ DEF;AB/DE = AC/DF;Aˆ = Dˆ ⇒ Δ ABC ∼ Δ DEF

   D. Δ ABC, Δ DEF;AB/DE = AC/DF;Aˆ = Eˆ ⇒ Δ ABC ∼ Δ DEF

Ta có:Bài tập Các trường hợp đồng dạng của tam giác | Lý thuyết và Bài tập Toán 8 có đáp án

Chọn đáp án C.

Bài 5: Cho hình bên, ABCD là hình thang ( AB//CD ) có AB = 12,5cm; CD = 28,5cm; DABˆ = DBCˆ. Tính độ dài đoạn BD gần nhất bằng bao nhiêu?

Bài tập Các trường hợp đồng dạng của tam giác | Lý thuyết và Bài tập Toán 8 có đáp án

   A. 17,5   B. 18

   C. 18,5   D. 19

Xét Δ ABD và Δ BDC có:

Bài tập Các trường hợp đồng dạng của tam giác | Lý thuyết và Bài tập Toán 8 có đáp án

⇒ AB/BD = AD/BC = BD/DC

hay 12,5/x = x/28,5 ⇒ x2 = 1425/4 ⇔ x ≈ 18,87

Chọn đáp án D.

Bài 6: Cho tam giác ABC có M và N lần lượt là trung điểm của AC và AB. Gọi AD là tia phân giác của góc BACˆ = DBCˆ, tia AD cắt MN tại P. Hỏi tam giác nào đồng dạng với tam giác ANP

A. Δ ABD B. ΔAMP

C. ΔABD D. Δ ACD

Xét tam giác ABC có M và N lần lượt là trung điểm của AC và AB nên MN là đường trung bình của tam giác ABC

Suy ra: MN // BC

Xét tam giác ABD có MP// BD (vì MN// BC)

Suy ra: Tam giác ANP đồng dạng với tam giác ABD.

Chọn đáp án A

Bài 7: Cho hình bình hành ABCD. Trên cạnh AB lấy điểm E, gọi F là giao điểm của DE và BC. Tìm khẳng định sai ?

A. Δ DAE đồng dạng Δ FBE

B. Δ DAE đồng dạng ΔFCD

C. Δ DEA đồng dạng ΔFCD

D. Δ FBE đồng dạng ΔFCD

* Xét tam giác DAE và ΔFBE có:

∠AED = ∠BEF (2 góc đối đỉnh)

∠ADE = ∠EFB (2 góc so le trong )

Suy ra: Δ DAE đồng dạng Δ FBE ( g.g) (1)

* Vì ABCD là hình bình hành nên: BE// CD

Suy ra: Δ FBE đồng dạng ΔFCD ( định lí) (2)

Từ (1) và (2) suy ra Δ DAE đồng dạng ΔFCD ( bắc cầu)

Chọn đáp án C

Bài 8: Cho tam giác ABC có AB = 3cm, AC = 4cm và BC = 5cm. Tam giác MNP vuông tại M có MN = 6cm; NP = 10cm . Tìm khẳng định sai?

A. Tam giác ABC là tam giác nhọn

B. Δ ABC đồng dạng tam giác MNP

C. Tam giác ABC vuông tại A.

D. MP = 8cm

* Ta có: AB2 + AC2 = BC2 (32 + 42 = 52 = 25 )

Suy ra: tam giác ABC vuông tại A.

* Áp dụng định lí Py ta go vào tam giác MNP ta có:

NP2 = MN2 + MP2

Suy ra: MP2 = NP2 – MN2 = 102 – 62 = 64

Do đó MP = 8cm.

*Ta có:

Bài tập Các trường hợp đồng dạng của tam giác | Lý thuyết và Bài tập Toán 8 có đáp án

Do đó, Δ ABC đồng dạng tam giác MNP (c.c.c)

Chọn đáp án A

Bài 9: Cho tam giác ABC có M, N và P lần lượt là trung điểm của AB ; AC; BC. Tìm khẳng định sai

A. ΔAMN đồng dạng ΔABC ( định lí)

B. ΔCNP đồng dạng ΔCAB ( định lí)

C. ΔAMN đồng dạng ΔNPC

D. Chỉ có đúng 2 cặp tam giác đồng dạng .

* Xét tam giác ABC có M và N lần lượt là trung điểm của AB và AC nên MN là đường trung bình của tam giác ABC

Suy ra : MN// BC

Tương tự có NP // AB

* Xét Δ AMN và ΔNPC có:

∠MAN = ∠PNC ( hai góc đồng vị )

∠ANM = ∠NCP ( hai góc đồng vị)

Suy ra: Δ AMN đồng dạng ΔNPC (g.g)

* Vì MN// BC nên ΔAMN đồng dạng ΔABC ( định lí)

* Vì NP // AB nên Δ CNP đồng dạng Δ CAB ( định lí)

Chọn đáp án D

Bài 10: Cho Δ ABC vuông góc tại A có BC = 5cm, AC = 3cm, EF = 3cm, DE = DF = 2,5cm. Chọn phát biểu đúng?

   A. Δ ABC ∼ Δ DEF

   B. ABCˆ = EFDˆ

   C. ACBˆ = ADFˆ

   D. ACBˆ = DEFˆ

Áp dụng định lý Py – ta – go vào tam giác ABC vuông tại A ta được

BC2 = AC2 + AB2 ⇒ AB = √ (BC2 - AC2) = √ (52 - 32) = 4( cm )

Ta có: cos ACBˆ = AC/BC = 3/5

Xét tam giác DEF có:

Bài tập Các trường hợp đồng dạng của tam giác | Lý thuyết và Bài tập Toán 8 có đáp án

Khi đó ACBˆ = DEFˆ

Chọn đáp án B.

 

Bài viết liên quan

497
  Tải tài liệu