Cho tam giác ABC vuông tại A, đường phân giác BE. Kẻ EH vuông góc với BC (H thuộc BC). Gọi K giao điểm của AB và HE. Chứng minh rằng:
a,
b, BE là đường trung trực của đoạn thẳng AH
c, EK=EC
d, AE<EC.
Quảng cáo
44 câu trả lời 55209
a) Xét ΔABE và ΔHBE : có :
^ BAE = ^ BHE = 90° ( giả thiết )
BE chung
^ABE = ^HBE ( giả thiết )
=> ΔABE=ΔHBE ( cạnh huyền -góc nhọn )
b) có ΔABE=ΔHBE ( câu a )
=> BA =BH (hai cạnh tương ứng )
gọi I là giao điểm của BE và AH .
xét ΔABI và ΔHBI:có:
BA=BH (cmt )
^ABE = ^HBE ( giả thiết )
BI chung
=>ΔABI = ΔHBE ( c-g-c )
=> AE=EH ( hai cạnh tương ứng ) (1)
=> ^BIA = ^BIH ( hai góc tương ứng )
có ^BIA + ^BIH = 180°
=> ^BIA = ^BIH = 180°:2=90°
=>BI vuông góc AH (2)
từ (1) và (2) => BE là đường trung trực của đoạn thẳng AH
c, xét ΔAEK và ΔHEC
có: ^EAK = ^EHC = 90° (gt)
AE=EH (ΔABE=ΔHBE )
^AEK=^HEC ( hai góc đối đỉnh )
=>ΔAEK và ΔHEC ( cạnh góc vuông - góc nhọn kề cạnh ấy )
=> EK=EC ( hai cạnh tương ứng )
d, có : AE<EK (trong Δ vuông cạnh huyền là cạnh lớn nhất )
mà EK=EC (câu c)
nên AE<EC (đpcm) ??????
??chúc bạn học tốt??
a) Xét ΔABE và ΔHBE : có :
^ BAE = ^ BHE = 90° ( giả thiết )
BE chung
^ABE = ^HBE ( giả thiết )
=> ΔABE=ΔHBE ( cạnh huyền -góc nhọn )
b) có ΔABE=ΔHBE ( câu a )
=> BA =BH (hai cạnh tương ứng )
gọi I là giao điểm của BE và AH .
xét ΔABI và ΔHBI:có:
BA=BH (cmt )
^ABE = ^HBE ( giả thiết )
BI chung
=>ΔABI = ΔHBE ( c-g-c )
=> AE=EH ( hai cạnh tương ứng ) (1)
=> ^BIA = ^BIH ( hai góc tương ứng )
có ^BIA + ^BIH = 180°
=> ^BIA = ^BIH = 180°:2=90°
=>BI vuông góc AH (2)
từ (1) và (2) => BE là đường trung trực của đoạn thẳng AH
c, xét ΔAEK và ΔHEC
có: ^EAK = ^EHC = 90° (gt)
AE=EH (ΔABE=ΔHBE )
^AEK=^HEC ( hai góc đối đỉnh )
=>ΔAEK và ΔHEC ( cạnh góc vuông - góc nhọn kề cạnh ấy )
=> EK=EC ( hai cạnh tương ứng )
d, có : AE<EK (trong Δ vuông cạnh huyền là cạnh lớn nhất )
mà EK=EC (câu c)
nên AE<EC (đpcm)
a) Xét ΔABE và ΔHBE : có :
^ BAE = ^ BHE = 90° ( giả thiết )
BE chung
^ABE = ^HBE ( giả thiết )
=> ΔABE=ΔHBE ( cạnh huyền -góc nhọn )
b) có ΔABE=ΔHBE ( câu a )
=> BA =BH (hai cạnh tương ứng )
gọi I là giao điểm của BE và AH .
xét ΔABI và ΔHBI:có:
BA=BH (cmt )
^ABE = ^HBE ( giả thiết )
BI chung
=>ΔABI = ΔHBE ( c-g-c )
=> AE=EH ( hai cạnh tương ứng ) (1)
=> ^BIA = ^BIH ( hai góc tương ứng )
có ^BIA + ^BIH = 180°
=> ^BIA = ^BIH = 180°:2=90°
=>BI vuông góc AH (2)
từ (1) và (2) => BE là đường trung trực của đoạn thẳng AH
c, xét ΔAEK và ΔHEC
có: ^EAK = ^EHC = 90° (gt)
AE=EH (ΔABE=ΔHBE )
^AEK=^HEC ( hai góc đối đỉnh )
=>ΔAEK và ΔHEC ( cạnh góc vuông - góc nhọn kề cạnh ấy )
=> EK=EC ( hai cạnh tương ứng )
d, có : AE<EK (trong Δ vuông cạnh huyền là cạnh lớn nhất )
mà EK=EC (câu c)
nên AE<EC (đpcm)
a) Xét ΔABE và ΔHBE : có :
^ BAE = ^ BHE = 90° ( giả thiết )
BE chung
^ABE = ^HBE ( giả thiết )
=> ΔABE=ΔHBE ( cạnh huyền -góc nhọn )
b) có ΔABE=ΔHBE ( câu a )
=> BA =BH (hai cạnh tương ứng )
gọi I là giao điểm của BE và AH .
xét ΔABI và ΔHBI:có:
BA=BH (cmt )
^ABE = ^HBE ( giả thiết )
BI chung
=>ΔABI = ΔHBE ( c-g-c )
=> AE=EH ( hai cạnh tương ứng ) (1)
=> ^BIA = ^BIH ( hai góc tương ứng )
có ^BIA + ^BIH = 180°
=> ^BIA = ^BIH = 180°:2=90°
=>BI vuông góc AH (2)
từ (1) và (2) => BE là đường trung trực của đoạn thẳng AH
c, xét ΔAEK và ΔHEC
có: ^EAK = ^EHC = 90° (gt)
AE=EH (ΔABE=ΔHBE )
^AEK=^HEC ( hai góc đối đỉnh )
=>ΔAEK và ΔHEC ( cạnh góc vuông - góc nhọn kề cạnh ấy )
=> EK=EC ( hai cạnh tương ứng )
d, có : AE<EK (trong Δ vuông cạnh huyền là cạnh lớn nhất )
mà EK=EC (câu c)
nên AE<EC (đpcm)
chào bn
a) Xét ΔABE và ΔHBE : có :
^ BAE = ^ BHE = 90° ( giả thiết )
BE chung
^ABE = ^HBE ( giả thiết )
=> ΔABE=ΔHBE ( cạnh huyền -góc nhọn )
b) có ΔABE=ΔHBE ( câu a )
=> BA =BH (hai cạnh tương ứng )
gọi I là giao điểm của BE và AH .
xét ΔABI và ΔHBI:có:
BA=BH (cmt )
^ABE = ^HBE ( giả thiết )
BI chung
=>ΔABI = ΔHBE ( c-g-c )
=> AE=EH ( hai cạnh tương ứng ) (1)
=> ^BIA = ^BIH ( hai góc tương ứng )
có ^BIA + ^BIH = 180°
=> ^BIA = ^BIH = 180°:2=90°
=>BI vuông góc AH (2)
từ (1) và (2) => BE là đường trung trực của đoạn thẳng AH
c, xét ΔAEK và ΔHEC
có: ^EAK = ^EHC = 90° (gt)
AE=EH (ΔABE=ΔHBE )
^AEK=^HEC ( hai góc đối đỉnh )
=>ΔAEK và ΔHEC ( cạnh góc vuông - góc nhọn kề cạnh ấy )
=> EK=EC ( hai cạnh tương ứng )
d, có : AE<EK (trong Δ vuông cạnh huyền là cạnh lớn nhất )
mà EK=EC (câu c)
nên AE<EC (đpcm)
Đây nhé bn
a) Xét ΔABE và ΔHBE : có :
^ BAE = ^ BHE = 90° ( giả thiết )
BE chung
^ABE = ^HBE ( giả thiết )
=> ΔABE=ΔHBE ( cạnh huyền -góc nhọn )
b) có ΔABE=ΔHBE ( câu a )
=> BA =BH (hai cạnh tương ứng )
gọi I là giao điểm của BE và AH .
xét ΔABI và ΔHBI:có:
BA=BH (cmt )
^ABE = ^HBE ( giả thiết )
BI chung
=>ΔABI = ΔHBE ( c-g-c )
=> AE=EH ( hai cạnh tương ứng ) (1)
=> ^BIA = ^BIH ( hai góc tương ứng )
có ^BIA + ^BIH = 180°
=> ^BIA = ^BIH = 180°:2=90°
=>BI vuông góc AH (2)
từ (1) và (2) => BE là đường trung trực của đoạn thẳng AH
c, xét ΔAEK và ΔHEC
có: ^EAK = ^EHC = 90° (gt)
AE=EH (ΔABE=ΔHBE )
^AEK=^HEC ( hai góc đối đỉnh )
=>ΔAEK và ΔHEC ( cạnh góc vuông - góc nhọn kề cạnh ấy )
=> EK=EC ( hai cạnh tương ứng )
d, có : AE<EK (trong Δ vuông cạnh huyền là cạnh lớn nhất )
mà EK=EC (câu c)
nên AE<EC (đpcm)
a) Xét ΔABE và ΔHBE : có :
^ BAE = ^ BHE = 90° ( giả thiết )
BE chung
^ABE = ^HBE ( giả thiết )
=> ΔABE=ΔHBE ( cạnh huyền -góc nhọn )
b) có ΔABE=ΔHBE ( câu a )
=> BA =BH (hai cạnh tương ứng )
gọi I là giao điểm của BE và AH .
xét ΔABI và ΔHBI:có:
BA=BH (cmt )
^ABE = ^HBE ( giả thiết )
BI chung
=>ΔABI = ΔHBE ( c-g-c )
=> AE=EH ( hai cạnh tương ứng ) (1)
=> ^BIA = ^BIH ( hai góc tương ứng )
có ^BIA + ^BIH = 180°
=> ^BIA = ^BIH = 180°:2=90°
=>BI vuông góc AH (2)
từ (1) và (2) => BE là đường trung trực của đoạn thẳng AH
c, xét ΔAEK và ΔHEC
có: ^EAK = ^EHC = 90° (gt)
AE=EH (ΔABE=ΔHBE )
^AEK=^HEC ( hai góc đối đỉnh )
=>ΔAEK và ΔHEC ( cạnh góc vuông - góc nhọn kề cạnh ấy )
=> EK=EC ( hai cạnh tương ứng )
d, có : AE<EK (trong Δ vuông cạnh huyền là cạnh lớn nhất )
mà EK=EC (câu c)
nên AE<EC (đpcm) ??????
??chúc bạn học tốt??
a) Xét ΔABE và ΔHBE : có :
^ BAE = ^ BHE = 90° ( giả thiết )
BE chung
^ABE = ^HBE ( giả thiết )
=> ΔABE=ΔHBE ( cạnh huyền -góc nhọn )
b) có ΔABE=ΔHBE ( câu a )
=> BA =BH (hai cạnh tương ứng )
gọi I là giao điểm của BE và AH .
xét ΔABI và ΔHBI:có:
BA=BH (cmt )
^ABE = ^HBE ( giả thiết )
BI chung
=>ΔABI = ΔHBE ( c-g-c )
=> AE=EH ( hai cạnh tương ứng ) (1)
=> ^BIA = ^BIH ( hai góc tương ứng )
có ^BIA + ^BIH = 180°
=> ^BIA = ^BIH = 180°:2=90°
=>BI vuông góc AH (2)
từ (1) và (2) => BE là đường trung trực của đoạn thẳng AH
c, xét ΔAEK và ΔHEC
có: ^EAK = ^EHC = 90° (gt)
AE=EH (ΔABE=ΔHBE )
^AEK=^HEC ( hai góc đối đỉnh )
=>ΔAEK và ΔHEC ( cạnh góc vuông - góc nhọn kề cạnh ấy )
=> EK=EC ( hai cạnh tương ứng )
d, có : AE<EK (trong Δ vuông cạnh huyền là cạnh lớn nhất )
mà EK=EC (câu c)
nên AE<EC (đpcm)
Xét ΔABE và ΔHBE : có :
^ BAE = ^ BHE = 90° ( giả thiết )
BE chung
^ABE = ^HBE ( giả thiết )
=> ΔABE=ΔHBE ( cạnh huyền -góc nhọn )
b) có ΔABE=ΔHBE ( câu a )
=> BA =BH (hai cạnh tương ứng )
gọi I là giao điểm của BE và AH .
xét ΔABI và ΔHBI:có:
BA=BH (cmt )
^ABE = ^HBE ( giả thiết )
BI chung
=>ΔABI = ΔHBE ( c-g-c )
=> AE=EH ( hai cạnh tương ứng ) (1)
=> ^BIA = ^BIH ( hai góc tương ứng )
có ^BIA + ^BIH = 180°
=> ^BIA = ^BIH = 180°:2=90°
=>BI vuông góc AH (2)
từ (1) và (2) => BE là đường trung trực của đoạn thẳng AH
c, xét ΔAEK và ΔHEC
có: ^EAK = ^EHC = 90° (gt)
AE=EH (ΔABE=ΔHBE )
^AEK=^HEC ( hai góc đối đỉnh )
=>ΔAEK và ΔHEC ( cạnh góc vuông - góc nhọn kề cạnh ấy )
=> EK=EC ( hai cạnh tương ứng )
d, có : AE<EK (trong Δ vuông cạnh huyền là cạnh lớn nhất )
mà EK=EC (câu c)
nên AE<EC (đpcm)
đây cậu
a) Xét ΔABE và ΔHBE : có :
^ BAE = ^ BHE = 90° ( giả thiết )
BE chung
^ABE = ^HBE ( giả thiết )
=> ΔABE=ΔHBE ( cạnh huyền -góc nhọn )
b) có ΔABE=ΔHBE ( câu a )
=> BA =BH (hai cạnh tương ứng )
gọi I là giao điểm của BE và AH .
xét ΔABI và ΔHBI:có:
BA=BH (cmt )
^ABE = ^HBE ( giả thiết )
BI chung
=>ΔABI = ΔHBE ( c-g-c )
=> AE=EH ( hai cạnh tương ứng ) (1)
=> ^BIA = ^BIH ( hai góc tương ứng )
có ^BIA + ^BIH = 180°
=> ^BIA = ^BIH = 180°:2=90°
=>BI vuông góc AH (2)
từ (1) và (2) => BE là đường trung trực của đoạn thẳng AH
c, xét ΔAEK và ΔHEC
có: ^EAK = ^EHC = 90° (gt)
AE=EH (ΔABE=ΔHBE )
^AEK=^HEC ( hai góc đối đỉnh )
=>ΔAEK và ΔHEC ( cạnh góc vuông - góc nhọn kề cạnh ấy )
=> EK=EC ( hai cạnh tương ứng )
d, có : AE<EK (trong Δ vuông cạnh huyền là cạnh lớn nhất )
mà EK=EC (câu c)
nên AE<EC (đpcm) ??????
??chúc bạn học tốt??
a) Xét ΔABE và ΔHBE : có :
^ BAE = ^ BHE = 90° ( giả thiết )
BE chung
^ABE = ^HBE ( giả thiết )
=> ΔABE=ΔHBE ( cạnh huyền -góc nhọn )
b) có ΔABE=ΔHBE ( câu a )
=> BA =BH (hai cạnh tương ứng )
gọi I là giao điểm của BE và AH .
xét ΔABI và ΔHBI:có:
BA=BH (cmt )
^ABE = ^HBE ( giả thiết )
BI chung
=>ΔABI = ΔHBE ( c-g-c )
=> AE=EH ( hai cạnh tương ứng ) (1)
=> ^BIA = ^BIH ( hai góc tương ứng )
có ^BIA + ^BIH = 180°
=> ^BIA = ^BIH = 180°:2=90°
=>BI vuông góc AH (2)
từ (1) và (2) => BE là đường trung trực của đoạn thẳng AH
c, xét ΔAEK và ΔHEC
có: ^EAK = ^EHC = 90° (gt)
AE=EH (ΔABE=ΔHBE )
^AEK=^HEC ( hai góc đối đỉnh )
=>ΔAEK và ΔHEC ( cạnh góc vuông - góc nhọn kề cạnh ấy )
=> EK=EC ( hai cạnh tương ứng )
d, có : AE<EK (trong Δ vuông cạnh huyền là cạnh lớn nhất )
mà EK=EC (câu c)
nên AE<EC (đpcm)
a) Xét ΔABE và ΔHBE : có :
^ BAE = ^ BHE = 90° ( giả thiết )
BE chung
^ABE = ^HBE ( giả thiết )
=> ΔABE=ΔHBE ( cạnh huyền -góc nhọn )
b) có ΔABE=ΔHBE ( câu a )
=> BA =BH (hai cạnh tương ứng )
gọi I là giao điểm của BE và AH .
xét ΔABI và ΔHBI:có:
BA=BH (cmt )
^ABE = ^HBE ( giả thiết )
BI chung
=>ΔABI = ΔHBE ( c-g-c )
=> AE=EH ( hai cạnh tương ứng ) (1)
=> ^BIA = ^BIH ( hai góc tương ứng )
có ^BIA + ^BIH = 180°
=> ^BIA = ^BIH = 180°:2=90°
=>BI vuông góc AH (2)
từ (1) và (2) => BE là đường trung trực của đoạn thẳng AH
c, xét ΔAEK và ΔHEC
có: ^EAK = ^EHC = 90° (gt)
AE=EH (ΔABE=ΔHBE )
^AEK=^HEC ( hai góc đối đỉnh )
=>ΔAEK và ΔHEC ( cạnh góc vuông - góc nhọn kề cạnh ấy )
=> EK=EC ( hai cạnh tương ứng )
d, có : AE<EK (trong Δ vuông cạnh huyền là cạnh lớn nhất )
mà EK=EC (câu c)
nên AE<EC (đpcm) ??????
a) Xét ΔABE và ΔHBE : có :
^ BAE = ^ BHE = 90° ( giả thiết )
BE chung
^ABE = ^HBE ( giả thiết )
=> ΔABE=ΔHBE ( cạnh huyền -góc nhọn )
b) có ΔABE=ΔHBE ( câu a )
=> BA =BH (hai cạnh tương ứng )
gọi I là giao điểm của BE và AH .
xét ΔABI và ΔHBI:có:
BA=BH (cmt )
^ABE = ^HBE ( giả thiết )
BI chung
=>ΔABI = ΔHBE ( c-g-c )
=> AE=EH ( hai cạnh tương ứng ) (1)
=> ^BIA = ^BIH ( hai góc tương ứng )
có ^BIA + ^BIH = 180°
=> ^BIA = ^BIH = 180°:2=90°
=>BI vuông góc AH (2)
từ (1) và (2) => BE là đường trung trực của đoạn thẳng AH
c, xét ΔAEK và ΔHEC
có: ^EAK = ^EHC = 90° (gt)
AE=EH (ΔABE=ΔHBE )
^AEK=^HEC ( hai góc đối đỉnh )
=>ΔAEK và ΔHEC ( cạnh góc vuông - góc nhọn kề cạnh ấy )
=> EK=EC ( hai cạnh tương ứng )
d, có : AE<EK (trong Δ vuông cạnh huyền là cạnh lớn nhất )
mà EK=EC (câu c)
nên AE<EC (đpcm)
a.
b. Từ phần a suy ra:
Suy ra E, B thuộc đường trung trực của đoạn thẳng AH
Suy ra BE là đường trung trực của AH.
Vậy BE là đường trung trực của đoạn thẳng AH
c.
d.
a) Xét ΔABE và ΔHBE : có :
^ BAE = ^ BHE = 90° ( giả thiết )
BE chung
^ABE = ^HBE ( giả thiết )
=> ΔABE=ΔHBE ( cạnh huyền -góc nhọn )
b) có ΔABE=ΔHBE ( câu a )
=> BA =BH (hai cạnh tương ứng )
gọi I là giao điểm của BE và AH .
xét ΔABI và ΔHBI:có:
BA=BH (cmt )
^ABE = ^HBE ( giả thiết )
BI chung
=>ΔABI = ΔHBE ( c-g-c )
=> AE=EH ( hai cạnh tương ứng ) (1)
=> ^BIA = ^BIH ( hai góc tương ứng )
có ^BIA + ^BIH = 180°
=> ^BIA = ^BIH = 180°:2=90°
=>BI vuông góc AH (2)
từ (1) và (2) => BE là đường trung trực của đoạn thẳng AH
c, xét ΔAEK và ΔHEC
có: ^EAK = ^EHC = 90° (gt)
AE=EH (ΔABE=ΔHBE )
^AEK=^HEC ( hai góc đối đỉnh )
=>ΔAEK và ΔHEC ( cạnh góc vuông - góc nhọn kề cạnh ấy )
=> EK=EC ( hai cạnh tương ứng )
d, có : AE<EK (trong Δ vuông cạnh huyền là cạnh lớn nhất )
mà EK=EC (câu c)
nên AE<EC (đpcm)
) Xét ΔABE và ΔHBE : có :
^ BAE = ^ BHE = 90° ( giả thiết )
BE chung
^ABE = ^HBE ( giả thiết )
=> ΔABE=ΔHBE ( cạnh huyền -góc nhọn )
b) có ΔABE=ΔHBE ( câu a )
=> BA =BH (hai cạnh tương ứng )
gọi I là giao điểm của BE và AH .
xét ΔABI và ΔHBI:có:
BA=BH (cmt )
^ABE = ^HBE ( giả thiết )
BI chung
=>ΔABI = ΔHBE ( c-g-c )
=> AE=EH ( hai cạnh tương ứng ) (1)
=> ^BIA = ^BIH ( hai góc tương ứng )
có ^BIA + ^BIH = 180°
=> ^BIA = ^BIH = 180°:2=90°
=>BI vuông góc AH (2)
từ (1) và (2) => BE là đường trung trực của đoạn thẳng AH
c, xét ΔAEK và ΔHEC
có: ^EAK = ^EHC = 90° (gt)
AE=EH (ΔABE=ΔHBE )
^AEK=^HEC ( hai góc đối đỉnh )
=>ΔAEK và ΔHEC ( cạnh góc vuông - góc nhọn kề cạnh ấy )
=> EK=EC ( hai cạnh tương ứng )
d, có : AE<EK (trong Δ vuông cạnh huyền là cạnh lớn nhất )
mà EK=EC (câu c)
nên AE<EC (đpcm) ??????
??chúc bạn học tốt??
a) Xét ΔABE và ΔHBE : có :
^ BAE = ^ BHE = 90° ( giả thiết )
BE chung
^ABE = ^HBE ( giả thiết )
=> ΔABE=ΔHBE ( cạnh huyền -góc nhọn )
b) có ΔABE=ΔHBE ( câu a )
=> BA =BH (hai cạnh tương ứng )
gọi I là giao điểm của BE và AH .
xét ΔABI và ΔHBI:có:
BA=BH (cmt )
^ABE = ^HBE ( giả thiết )
BI chung
=>ΔABI = ΔHBE ( c-g-c )
=> AE=EH ( hai cạnh tương ứng ) (1)
=> ^BIA = ^BIH ( hai góc tương ứng )
có ^BIA + ^BIH = 180°
=> ^BIA = ^BIH = 180°:2=90°
=>BI vuông góc AH (2)
từ (1) và (2) => BE là đường trung trực của đoạn thẳng AH
c, xét ΔAEK và ΔHEC
có: ^EAK = ^EHC = 90° (gt)
AE=EH (ΔABE=ΔHBE )
^AEK=^HEC ( hai góc đối đỉnh )
=>ΔAEK và ΔHEC ( cạnh góc vuông - góc nhọn kề cạnh ấy )
=> EK=EC ( hai cạnh tương ứng )
d, có : AE<EK (trong Δ vuông cạnh huyền là cạnh lớn nhất )
mà EK=EC (câu c)
nên AE<EC (đpcm) ??????
a) Xét ΔABE và ΔHBE : có :
^ BAE = ^ BHE = 90° ( giả thiết )
BE chung
^ABE = ^HBE ( giả thiết )
=> ΔABE=ΔHBE ( cạnh huyền -góc nhọn )
b) có ΔABE=ΔHBE ( câu a )
=> BA =BH (hai cạnh tương ứng )
gọi I là giao điểm của BE và AH .
xét ΔABI và ΔHBI:có:
BA=BH (cmt )
^ABE = ^HBE ( giả thiết )
BI chung
=>ΔABI = ΔHBE ( c-g-c )
=> AE=EH ( hai cạnh tương ứng ) (1)
=> ^BIA = ^BIH ( hai góc tương ứng )
có ^BIA + ^BIH = 180°
=> ^BIA = ^BIH = 180°:2=90°
=>BI vuông góc AH (2)
từ (1) và (2) => BE là đường trung trực của đoạn thẳng AH
c, xét ΔAEK và ΔHEC
có: ^EAK = ^EHC = 90° (gt)
AE=EH (ΔABE=ΔHBE )
^AEK=^HEC ( hai góc đối đỉnh )
=>ΔAEK và ΔHEC ( cạnh góc vuông - góc nhọn kề cạnh ấy )
=> EK=EC ( hai cạnh tương ứng )
d, có : AE<EK (trong Δ vuông cạnh huyền là cạnh lớn nhất )
mà EK=EC (câu c)
nên AE<EC (đpcm)
a) Xét ΔABE và ΔHBE : có :
^ BAE = ^ BHE = 90° ( giả thiết )
BE chung
^ABE = ^HBE ( giả thiết )
=> ΔABE=ΔHBE ( cạnh huyền -góc nhọn )
b) có ΔABE=ΔHBE ( câu a )
=> BA =BH (hai cạnh tương ứng )
gọi I là giao điểm của BE và AH .
xét ΔABI và ΔHBI:có:
BA=BH (cmt )
^ABE = ^HBE ( giả thiết )
BI chung
=>ΔABI = ΔHBE ( c-g-c )
=> AE=EH ( hai cạnh tương ứng ) (1)
=> ^BIA = ^BIH ( hai góc tương ứng )
có ^BIA + ^BIH = 180°
=> ^BIA = ^BIH = 180°:2=90°
=>BI vuông góc AH (2)
từ (1) và (2) => BE là đường trung trực của đoạn thẳng AH
c, xét ΔAEK và ΔHEC
có: ^EAK = ^EHC = 90° (gt)
AE=EH (ΔABE=ΔHBE )
^AEK=^HEC ( hai góc đối đỉnh )
=>ΔAEK và ΔHEC ( cạnh góc vuông - góc nhọn kề cạnh ấy )
=> EK=EC ( hai cạnh tương ứng )
d, có : AE<EK (trong Δ vuông cạnh huyền là cạnh lớn nhất )
mà EK=EC (câu c)
nên AE<EC (đpcm) ??????
Xét ΔABE và ΔHBE : có :
^ BAE = ^ BHE = 90° ( giả thiết )
BE chung
^ABE = ^HBE ( giả thiết )
=> ΔABE=ΔHBE ( cạnh huyền -góc nhọn )
b) có ΔABE=ΔHBE ( câu a )
=> BA =BH (hai cạnh tương ứng )
gọi I là giao điểm của BE và AH .
xét ΔABI và ΔHBI:có:
BA=BH (cmt )
^ABE = ^HBE ( giả thiết )
BI chung
=>ΔABI = ΔHBE ( c-g-c )
=> AE=EH ( hai cạnh tương ứng ) (1)
=> ^BIA = ^BIH ( hai góc tương ứng )
có ^BIA + ^BIH = 180°
=> ^BIA = ^BIH = 180°:2=90°
=>BI vuông góc AH (2)
từ (1) và (2) => BE là đường trung trực của đoạn thẳng AH
c, xét ΔAEK và ΔHEC
có: ^EAK = ^EHC = 90° (gt)
AE=EH (ΔABE=ΔHBE )
^AEK=^HEC ( hai góc đối đỉnh )
=>ΔAEK và ΔHEC ( cạnh góc vuông - góc nhọn kề cạnh ấy )
=> EK=EC ( hai cạnh tương ứng )
d, có : AE<EK (trong Δ vuông cạnh huyền là cạnh lớn nhất )
mà EK=EC (câu c)
nên AE<EC (đpcm) ??????
a) Xét ΔABE và ΔHBE : có :
^ BAE = ^ BHE = 90° ( giả thiết )
BE chung
^ABE = ^HBE ( giả thiết )
=> ΔABE=ΔHBE ( cạnh huyền -góc nhọn )
b) có ΔABE=ΔHBE ( câu a )
=> BA =BH (hai cạnh tương ứng )
gọi I là giao điểm của BE và AH .
xét ΔABI và ΔHBI:có:
BA=BH (cmt )
^ABE = ^HBE ( giả thiết )
BI chung
=>ΔABI = ΔHBE ( c-g-c )
=> AE=EH ( hai cạnh tương ứng ) (1)
=> ^BIA = ^BIH ( hai góc tương ứng )
có ^BIA + ^BIH = 180°
=> ^BIA = ^BIH = 180°:2=90°
=>BI vuông góc AH (2)
từ (1) và (2) => BE là đường trung trực của đoạn thẳng AH
c, xét ΔAEK và ΔHEC
có: ^EAK = ^EHC = 90° (gt)
AE=EH (ΔABE=ΔHBE )
^AEK=^HEC ( hai góc đối đỉnh )
=>ΔAEK và ΔHEC ( cạnh góc vuông - góc nhọn kề cạnh ấy )
=> EK=EC ( hai cạnh tương ứng )
d, có : AE<EK (trong Δ vuông cạnh huyền là cạnh lớn nhất )
mà EK=EC (câu c)
nên AE<EC (đpcm)
a) Xét ΔABE và ΔHBE : có :
^ BAE = ^ BHE = 90° ( giả thiết )
BE chung
^ABE = ^HBE ( giả thiết )
=> ΔABE=ΔHBE ( cạnh huyền -góc nhọn )
b) có ΔABE=ΔHBE ( câu a )
=> BA =BH (hai cạnh tương ứng )
gọi I là giao điểm của BE và AH .
xét ΔABI và ΔHBI:có:
BA=BH (cmt )
^ABE = ^HBE ( giả thiết )
BI chung
=>ΔABI = ΔHBE ( c-g-c )
=> AE=EH ( hai cạnh tương ứng ) (1)
=> ^BIA = ^BIH ( hai góc tương ứng )
có ^BIA + ^BIH = 180°
=> ^BIA = ^BIH = 180°:2=90°
=>BI vuông góc AH (2)
từ (1) và (2) => BE là đường trung trực của đoạn thẳng AH
c, xét ΔAEK và ΔHEC
có: ^EAK = ^EHC = 90° (gt)
AE=EH (ΔABE=ΔHBE )
^AEK=^HEC ( hai góc đối đỉnh )
=>ΔAEK và ΔHEC ( cạnh góc vuông - góc nhọn kề cạnh ấy )
=> EK=EC ( hai cạnh tương ứng )
d, có : AE<EK (trong Δ vuông cạnh huyền là cạnh lớn nhất )
mà EK=EC (câu c)
nên AE<EC (đpcm)
a) Xét ΔABE và ΔHBE : có :
^ BAE = ^ BHE = 90° ( giả thiết )
BE chung
^ABE = ^HBE ( giả thiết )
=> ΔABE=ΔHBE ( cạnh huyền -góc nhọn )
b) có ΔABE=ΔHBE ( câu a )
=> BA =BH (hai cạnh tương ứng )
gọi I là giao điểm của BE và AH .
xét ΔABI và ΔHBI:có:
BA=BH (cmt )
^ABE = ^HBE ( giả thiết )
BI chung
=>ΔABI = ΔHBE ( c-g-c )
=> AE=EH ( hai cạnh tương ứng ) (1)
=> ^BIA = ^BIH ( hai góc tương ứng )
có ^BIA + ^BIH = 180°
=> ^BIA = ^BIH = 180°:2=90°
=>BI vuông góc AH (2)
từ (1) và (2) => BE là đường trung trực của đoạn thẳng AH
c, xét ΔAEK và ΔHEC
có: ^EAK = ^EHC = 90° (gt)
AE=EH (ΔABE=ΔHBE )
^AEK=^HEC ( hai góc đối đỉnh )
=>ΔAEK và ΔHEC ( cạnh góc vuông - góc nhọn kề cạnh ấy )
=> EK=EC ( hai cạnh tương ứng )
d, có : AE<EK (trong Δ vuông cạnh huyền là cạnh lớn nhất )
mà EK=EC (câu c)
nên AE<EC (đpcm)
a) Xét ΔABE và ΔHBE : có :
^ BAE = ^ BHE = 90° ( giả thiết )
BE chung
^ABE = ^HBE ( giả thiết )
=> ΔABE=ΔHBE ( cạnh huyền -góc nhọn )
b) có ΔABE=ΔHBE ( câu a )
=> BA =BH (hai cạnh tương ứng )
gọi I là giao điểm của BE và AH .
xét ΔABI và ΔHBI:có:
BA=BH (cmt )
^ABE = ^HBE ( giả thiết )
BI chung
=>ΔABI = ΔHBE ( c-g-c )
=> AE=EH ( hai cạnh tương ứng ) (1)
=> ^BIA = ^BIH ( hai góc tương ứng )
có ^BIA + ^BIH = 180°
=> ^BIA = ^BIH = 180°:2=90°
=>BI vuông góc AH (2)
từ (1) và (2) => BE là đường trung trực của đoạn thẳng AH
c, xét ΔAEK và ΔHEC
có: ^EAK = ^EHC = 90° (gt)
AE=EH (ΔABE=ΔHBE )
^AEK=^HEC ( hai góc đối đỉnh )
=>ΔAEK và ΔHEC ( cạnh góc vuông - góc nhọn kề cạnh ấy )
=> EK=EC ( hai cạnh tương ứng )
d, có : AE<EK (trong Δ vuông cạnh huyền là cạnh lớn nhất )
mà EK=EC (câu c)
nên AE<EC (đpcm)
a) Xét ΔABE và ΔHBE : có :
^ BAE = ^ BHE = 90° ( giả thiết )
BE chung
^ABE = ^HBE ( giả thiết )
=> ΔABE=ΔHBE ( cạnh huyền -góc nhọn )
b) có ΔABE=ΔHBE ( câu a )
=> BA =BH (hai cạnh tương ứng )
gọi I là giao điểm của BE và AH .
xét ΔABI và ΔHBI:có:
BA=BH (cmt )
^ABE = ^HBE ( giả thiết )
BI chung
=>ΔABI = ΔHBE ( c-g-c )
=> AE=EH ( hai cạnh tương ứng ) (1)
=> ^BIA = ^BIH ( hai góc tương ứng )
có ^BIA + ^BIH = 180°
=> ^BIA = ^BIH = 180°:2=90°
=>BI vuông góc AH (2)
từ (1) và (2) => BE là đường trung trực của đoạn thẳng AH
c, xét ΔAEK và ΔHEC
có: ^EAK = ^EHC = 90° (gt)
AE=EH (ΔABE=ΔHBE )
^AEK=^HEC ( hai góc đối đỉnh )
=>ΔAEK và ΔHEC ( cạnh góc vuông - góc nhọn kề cạnh ấy )
=> EK=EC ( hai cạnh tương ứng )
d, có : AE<EK (trong Δ vuông cạnh huyền là cạnh lớn nhất )
mà EK=EC (câu c)
nên AE<EC (đpcm)
a) Xét ΔABE và ΔHBE : có :
^ BAE = ^ BHE = 90° ( giả thiết )
BE chung
^ABE = ^HBE ( giả thiết )
=> ΔABE=ΔHBE ( cạnh huyền -góc nhọn )
b) có ΔABE=ΔHBE ( câu a )
=> BA =BH (hai cạnh tương ứng )
gọi I là giao điểm của BE và AH .
xét ΔABI và ΔHBI:có:
BA=BH (cmt )
^ABE = ^HBE ( giả thiết )
BI chung
=>ΔABI = ΔHBE ( c-g-c )
=> AE=EH ( hai cạnh tương ứng ) (1)
=> ^BIA = ^BIH ( hai góc tương ứng )
có ^BIA + ^BIH = 180°
=> ^BIA = ^BIH = 180°:2=90°
=>BI vuông góc AH (2)
từ (1) và (2) => BE là đường trung trực của đoạn thẳng AH
c, xét ΔAEK và ΔHEC
có: ^EAK = ^EHC = 90° (gt)
AE=EH (ΔABE=ΔHBE )
^AEK=^HEC ( hai góc đối đỉnh )
=>ΔAEK và ΔHEC ( cạnh góc vuông - góc nhọn kề cạnh ấy )
=> EK=EC ( hai cạnh tương ứng )
d, có : AE<EK (trong Δ vuông cạnh huyền là cạnh lớn nhất )
mà EK=EC (câu c)
nên AE<EC (đpcm)
) Xét ΔABE và ΔHBE : có :
^ BAE = ^ BHE = 90° ( giả thiết )
BE chung
^ABE = ^HBE ( giả thiết )
=> ΔABE=ΔHBE ( cạnh huyền -góc nhọn )
b) có ΔABE=ΔHBE ( câu a )
=> BA =BH (hai cạnh tương ứng )
gọi I là giao điểm của BE và AH .
xét ΔABI và ΔHBI:có:
BA=BH (cmt )
^ABE = ^HBE ( giả thiết )
BI chung
=>ΔABI = ΔHBE ( c-g-c )
=> AE=EH ( hai cạnh tương ứng ) (1)
=> ^BIA = ^BIH ( hai góc tương ứng )
có ^BIA + ^BIH = 180°
=> ^BIA = ^BIH = 180°:2=90°
=>BI vuông góc AH (2)
từ (1) và (2) => BE là đường trung trực của đoạn thẳng AH
c, xét ΔAEK và ΔHEC
có: ^EAK = ^EHC = 90° (gt)
AE=EH (ΔABE=ΔHBE )
^AEK=^HEC ( hai góc đối đỉnh )
=>ΔAEK và ΔHEC ( cạnh góc vuông - góc nhọn kề cạnh ấy )
=> EK=EC ( hai cạnh tương ứng )
d, có : AE<EK (trong Δ vuông cạnh huyền là cạnh lớn nhất )
mà EK=EC (câu c)
nên AE<EC (đpcm) ??????
Quảng cáo
Câu hỏi hot cùng chủ đề
-
6 60855
-
Hỏi từ APP VIETJACK6 39613
-
9 37817