b) Tìm k để đường thẳng d: y=-x+2 cắt d': y=2x+3-k tại một điểm trên trục hoành.
c) Cho hàm số y=(m+2)x2 (m≠-2).Tìm giá trị của m để hàm số Đồng Biến khi
x <0
Quảng cáo
3 câu trả lời 181
### b) Tìm \( k \) để đường thẳng \( d: y = -x + 2 \) cắt \( d': y = 2x + 3 - k \) tại một điểm trên trục hoành
Để đường thẳng \( d \) và \( d' \) cắt nhau tại một điểm trên trục hoành, tọa độ điểm cắt phải có dạng \( (x, 0) \).
Với điểm cắt là \( (x, 0) \), phương trình của \( d \) và \( d' \) khi \( y = 0 \) là:
\[
0 = -x + 2 \quad \Rightarrow \quad x = 2
\]
Với \( x = 2 \), ta thay vào phương trình của đường thẳng \( d' \):
\[
0 = 2(2) + 3 - k
\]
\[
0 = 4 + 3 - k
\]
\[
k = 7
\]
Vậy, giá trị của \( k \) để đường thẳng \( d \) và \( d' \) cắt nhau tại một điểm trên trục hoành là \( k = 7 \).
### c) Tìm giá trị của \( m \) để hàm số \( y = (m + 2)x^2 \) đồng biến khi \( x < 0 \)
Xét hàm số \( y = (m + 2)x^2 \), hàm số này là hàm bậc hai và có hệ số \( a = m + 2 \).
Hàm số bậc hai đồng biến trên khoảng \( x < 0 \) khi đồ thị của nó có bề lõm hướng lên và đỉnh của parabol nằm bên trái (âm).
Để hàm số đồng biến trên \( x < 0 \), ta cần:
- \( m + 2 > 0 \)
\[
m + 2 > 0 \quad \Rightarrow \quad m > -2
\]
Do đó, hàm số \( y = (m + 2)x^2 \) đồng biến khi \( x < 0 \) nếu \( m > -2 \).
Tóm lại, giá trị của \( m \) để hàm số đồng biến khi \( x < 0 \) là \( m > -2 \).
### b) Tìm k𝑘 để đường thẳng d:y=−x+2𝑑:𝑦=−𝑥+2 cắt d′:y=2x+3−k𝑑′:𝑦=2𝑥+3−𝑘 tại một điểm trên trục hoành
Để đường thẳng d𝑑 và d′𝑑′ cắt nhau tại một điểm trên trục hoành, tọa độ điểm cắt phải có dạng (x,0)(𝑥,0).
Với điểm cắt là (x,0)(𝑥,0), phương trình của d𝑑 và d′𝑑′ khi y=0𝑦=0 là:
0=−x+2⇒x=20=−𝑥+2⇒𝑥=2
Với x=2𝑥=2, ta thay vào phương trình của đường thẳng d′𝑑′:
0=2(2)+3−k0=2(2)+3−𝑘
0=4+3−k0=4+3−𝑘
k=7𝑘=7
Vậy, giá trị của k𝑘 để đường thẳng d𝑑 và d′𝑑′ cắt nhau tại một điểm trên trục hoành là k=7𝑘=7.
### c) Tìm giá trị của m𝑚 để hàm số y=(m+2)x2𝑦=(𝑚+2)𝑥2 đồng biến khi x<0𝑥<0
Xét hàm số y=(m+2)x2𝑦=(𝑚+2)𝑥2, hàm số này là hàm bậc hai và có hệ số a=m+2𝑎=𝑚+2.
Hàm số bậc hai đồng biến trên khoảng x<0𝑥<0 khi đồ thị của nó có bề lõm hướng lên và đỉnh của parabol nằm bên trái (âm).
Để hàm số đồng biến trên x<0𝑥<0, ta cần:
- m+2>0𝑚+2>0
m+2>0⇒m>−2𝑚+2>0⇒𝑚>−2
Do đó, hàm số y=(m+2)x2𝑦=(𝑚+2)𝑥2 đồng biến khi x<0𝑥<0 nếu m>−2𝑚>−2.
Tóm lại, giá trị của m𝑚 để hàm số đồng biến khi x<0𝑥<0 là m>−2𝑚>−2.
### b) Tìm k𝑘 để đường thẳng d:y=−x+2𝑑:𝑦=−𝑥+2 cắt d′:y=2x+3−k𝑑′:𝑦=2𝑥+3−𝑘 tại một điểm trên trục hoành
Để đường thẳng d𝑑 và d′𝑑′ cắt nhau tại một điểm trên trục hoành, tọa độ điểm cắt phải có dạng (x,0)(𝑥,0).
Với điểm cắt là (x,0)(𝑥,0), phương trình của d𝑑 và d′𝑑′ khi y=0𝑦=0 là:
0=−x+2⇒x=20=−𝑥+2⇒𝑥=2
Với x=2𝑥=2, ta thay vào phương trình của đường thẳng d′𝑑′:
0=2(2)+3−k0=2(2)+3−𝑘
0=4+3−k0=4+3−𝑘
k=7𝑘=7
Vậy, giá trị của k𝑘 để đường thẳng d𝑑 và d′𝑑′ cắt nhau tại một điểm trên trục hoành là k=7𝑘=7.
### c) Tìm giá trị của m𝑚 để hàm số y=(m+2)x2𝑦=(𝑚+2)𝑥2 đồng biến khi x<0𝑥<0
Xét hàm số y=(m+2)x2𝑦=(𝑚+2)𝑥2, hàm số này là hàm bậc hai và có hệ số a=m+2𝑎=𝑚+2.
Hàm số bậc hai đồng biến trên khoảng x<0𝑥<0 khi đồ thị của nó có bề lõm hướng lên và đỉnh của parabol nằm bên trái (âm).
Để hàm số đồng biến trên x<0𝑥<0, ta cần:
- m+2>0𝑚+2>0
m+2>0⇒m>−2𝑚+2>0⇒𝑚>−2
Do đó, hàm số y=(m+2)x2𝑦=(𝑚+2)𝑥2 đồng biến khi x<0𝑥<0 nếu m>−2𝑚>−2.
Tóm lại, giá trị của m𝑚 để hàm số đồng biến khi x<0𝑥<0 là m>−2𝑚>−2.
Quảng cáo
Bạn cần hỏi gì?
Câu hỏi hot cùng chủ đề
-
Đã trả lời bởi chuyên gia
103643 -
Hỏi từ APP VIETJACK
Đã trả lời bởi chuyên gia
68927 -
Đã trả lời bởi chuyên gia
56777 -
Đã trả lời bởi chuyên gia
47628 -
Đã trả lời bởi chuyên gia
44434 -
Đã trả lời bởi chuyên gia
36922 -
Đã trả lời bởi chuyên gia
35490
