Cho hình bình hành ABCD có AB = 4, AD = 6

Lời giải Bài 8 trang 100 Toán lớp 10 Tập 1 sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán lớp 10 Tập 1.

486


Giải Toán lớp 10 Bài tập cuối chương 4

Bài 8 trang 100 Toán lớp 10 Tập 1: Cho hình bình hành ABCD có AB = 4, AD = 6, BAD^=60° (Hình 74).

Giải Toán 10 Bài tập cuối chương 4 - Cánh diều (ảnh 1)

a) Biểu thị các vectơ BD,  AC theo AB,  AD.

b) Tính các tích vô hướng AB.AD,  AB.AC,  BD.AC.

c) Tính độ dài các đường chéo BD, AC.

Lời giải:

Giải Toán 10 Bài tập cuối chương 4 - Cánh diều (ảnh 1)

a) Ta có BD=ADAB.

Áp dụng quy tắc hình bình hành ta có AB+AD=AC.

b) Ta có AB.AD=AB.AD.cosAB,AD

= 4 . 6 . cos BAD^ = 24 . cos 60o = 12.

AB.AC=AB.AB+AD=AB2+AB.AD = 42 + 12  = 28.

BD.AC=ADAB.AB+AD=AD.AB+AD2AB2AB.AD 

= 62 - 42 = 20.

c) Áp dụng định lí côsin vào tam giác ABD có:

BD2 = AB2 + AD2 - 2.AB.AD.cos BAD^

 BD2 = 42 + 62 - 2.4.6.cos 60o

 BD2 = 28

 BD = 27

Do ABCD là hình bình hành nên BAD^+ADC^=180°.

Do đó ADC^=180°BAD^=180°60°=120°.

Áp dụng định lí côsin vào tam giác ADC có:

CD2 = AD2 + DC2 - 2.AD.DC.cos ADC^

 CD2 = 62 + 42 - 2.6.4.cos 120o

 CD2 = 76

 CD = 219

Vậy BD = 27; CD = 219.

486