Lập bảng xét dấu của mỗi tam thức bậc hai sau: a) f(x) = – 3x^2 + 4x – 1

Lời giải Bài 6 trang 61 Toán lớp 10 Tập 1 sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán lớp 10 Tập 1.

641


Giải Toán lớp 10 Bài tập cuối chương 3

Bài 6 trang 61 Toán lớp 10 Tập 1: Lập bảng xét dấu của mỗi tam thức bậc hai sau:

a) f(x) = – 3x2 + 4x – 1; 

b) f(x) = x2 – x – 12; 

c) f(x) = 16x2 + 24x + 9. 

Lời giải:

a) Xét tam thức bậc hai f(x) = – 3x2 + 4x – 1 có:

∆ = 4– 4 . (– 3) . (– 1) = 4 > 0.

Do đó tam thức f(x) có hai nghiệm phân biệt x1 = 13 và x2 = 1

Ta lại có a = - 3 < 0

Ta lập được bảng xét dấu như sau:

x

– ∞              13                     1                   + ∞

f(x)

                   0           +         0             

b) Xét tam thức bậc hai f(x) = x2 – x – 12 có:

 ∆ = (– 1)2 – 4 . 1 . (– 12) = 49 > 0.

Do đó tam thức f(x) có hai nghiệm phân biệt x1 = – 3 và x2 = 4.

Ta có hệ số a = 1 > 0

Ta lập được bảng xét dấu sau:

x

– ∞             – 3                     4                   + ∞

f(x)

         +          0                    0             +

c) Xét tam thức bậc hai f(x) = 16x2 + 24x + 9 có:

∆ = 242 – 4 . 16 . 9 = 0.

Do đó tam thức bậc hai có nghiệm kép x = 34.

Ta có hệ số a = 16 > 0

Sử dụng định lý về dấu của tam thức bậc hai, ta có bảng xét dấu sau:

x

– ∞                          34                           + ∞

f(x)

                  +                0                +

641