Cho tam giác ABC vuông tại A, điểm D thuộc cạnh AB, điểm E thuộc cạnh AC. Gọi M, N, P, Q theo thứ tự là trung điểm của cạnh DE, DC, BC, BE. Chứng minh rằng bốn điểm M, N, P, Q thuộc cùng một đường tròn.
Quảng cáo
1 câu trả lời 7866
* Xét tam giác DEC có
M là trung điểm DE
N là trung điểm DC
MN là đường trung bình của tam giác DEC, hay MN//EC (*) và MN=1/2 EC (1)
* Xét tam giác BEC có
Q là trung điểm BE
P là trung điểm BC
PQ là đường trung bình của tam giác BEC, hay PQ//EC và PQ=1/2 EC (2).
Từ (1) và (2) suy ra tứ giác MNPQ là hình bình hành.
* Xét tam giác DEB có
Q là trung điểm BE
M là trung điểm DE
QM là đường trung bình của tam giác BED, hay MQ//DB (3).
Mà AB⊥AC (4)
Từ (1), (3) và (4) suy ra MN⊥MQ (5)
Tứ giác MNPQ là hình bình hành mà có một góc vuông MNPQ là hình chữ nhật.
Gọi I là giao điểm của hai đường chéo MP và QN
Suy ra IM=IN=IP=IQ (tính chất hình chữ nhật)
Nên các điểm M, N, P, Q đều cách đều I một khoảng cố định
M, N, P, Q cùng thuộc một đường tròn.
Quảng cáo
Bạn cần hỏi gì?
Câu hỏi hot cùng chủ đề
-
Đã trả lời bởi chuyên gia
103520 -
Hỏi từ APP VIETJACK
Đã trả lời bởi chuyên gia
68861 -
Đã trả lời bởi chuyên gia
56682 -
Đã trả lời bởi chuyên gia
47564 -
Đã trả lời bởi chuyên gia
44351 -
Đã trả lời bởi chuyên gia
36876 -
Đã trả lời bởi chuyên gia
35387
