Quảng cáo
2 câu trả lời 141
To simplify the expression
\[
\frac{x^2}{(x - 2)(x + 2)} - \frac{x}{x - 2} - \frac{2}{x + 2}
\]
let's follow these steps:
### Step 1: Rewrite the Expression
The expression can be rewritten as:
\[
\frac{x^2}{(x - 2)(x + 2)} - \frac{x(x + 2)}{(x - 2)(x + 2)} - \frac{2(x - 2)}{(x - 2)(x + 2)}
\]
### Step 2: Find a Common Denominator
The common denominator for the three terms is \((x - 2)(x + 2)\).
### Step 3: Combine the Fractions
Now we can combine the fractions:
\[
\frac{x^2 - x(x + 2) - 2(x - 2)}{(x - 2)(x + 2)}
\]
### Step 4: Expand the Numerator
1. Expand \(x(x + 2)\):
\[
x(x + 2) = x^2 + 2x
\]
2. Expand \(2(x - 2)\):
\[
2(x - 2) = 2x - 4
\]
Substituting these expansions back into the numerator:
\[
x^2 - (x^2 + 2x) - (2x - 4)
\]
### Step 5: Simplify the Numerator
Combine the terms in the numerator:
\[
x^2 - x^2 - 2x - 2x + 4 = -4x + 4
\]
### Step 6: Write the Final Expression
So we have:
\[
\frac{-4x + 4}{(x - 2)(x + 2)}
\]
This can be factored further:
\[
\frac{-4(x - 1)}{(x - 2)(x + 2)}
\]
### Conclusion
The simplified form of the expression is:
\[
\frac{-4(x - 1)}{(x - 2)(x + 2)}
\]
To simplify the expression \( \frac{x^2}{(x - 2)(x + 2) - \frac{x}{x - 2} - \frac{2}{x + 2}} \), let's break it down step by step.
1. **Identify the expression:**
The expression can be rewritten (with proper parentheses) as:
\[
\frac{x^2}{(x - 2)(x + 2) - \frac{x}{x - 2} - \frac{2}{x + 2}}
\]
2. **Simplify the denominator:**
First, evaluate \( (x - 2)(x + 2) \):
\[
(x - 2)(x + 2) = x^2 - 4
\]
Therefore, the denominator becomes:
\[
x^2 - 4 - \frac{x}{x - 2} - \frac{2}{x + 2}
\]
3. **Combine the fractions in the denominator:**
We need a common denominator for the terms \( \frac{x}{x - 2} \) and \( \frac{2}{x + 2} \). The common denominator is \( (x - 2)(x + 2) \):
\[
\frac{x}{x - 2} = \frac{x(x + 2)}{(x - 2)(x + 2)} = \frac{x^2 + 2x}{x^2 - 4}
\]
\[
\frac{2}{x + 2} = \frac{2(x - 2)}{(x - 2)(x + 2)} = \frac{2x - 4}{x^2 - 4}
\]
Therefore, we can now write the two fractions together:
\[
-\frac{x^2 + 2x + 2x - 4}{x^2 - 4} = -\frac{x^2 + 4x - 4}{x^2 - 4}
\]
4. **Putting it back into the denominator:**
Now we have:
\[
x^2 - 4 - \left(-\frac{x^2 + 4x - 4}{x^2 - 4}\right) = \frac{(x^2 - 4)(x^2 - 4) + x^2 + 4x - 4}{x^2 - 4}
\]
Simplifying the numerator will yield:
\[
(x^2 - 4)^2 + x^2 + 4x - 4
\]
5. **Resulting expression:**
The entire expression, now simplified, is:
\[
\frac{x^2}{\frac{(x^2 - 4)^2 + x^2 + 4x - 4}{x^2 - 4}} = \frac{x^2 (x^2 - 4)}{(x^2 - 4)^2 + x^2 + 4x - 4}
\]
Now, further simplification depends on the specific values of \( x \). The above process illustrates the required steps to reduce and combine such expressions.
Simplifying completely might require factoring or possibly identifying specific values for \( x \). If there's more specification on the values or further simplification is needed, please provide.
Quảng cáo
Bạn cần hỏi gì?
Câu hỏi hot cùng chủ đề
-
107437
-
Hỏi từ APP VIETJACK
Đã trả lời bởi chuyên gia
68061 -
Đã trả lời bởi chuyên gia
52846 -
Đã trả lời bởi chuyên gia
47344 -
Đã trả lời bởi chuyên gia
45400 -
Đã trả lời bởi chuyên gia
45045 -
Hỏi từ APP VIETJACK
Đã trả lời bởi chuyên gia
38412 -
Đã trả lời bởi chuyên gia
38191
