a) Chứng minh tứ giác AHOK nội tiếp
b) Chứng minh tam giác CEF cân
Quảng cáo
3 câu trả lời 420
a: MA=MC
OA=OC
=>OM là trung trực của AC
=>OM vuông góc AC tại K
góc AHO+góc AKO=180 độ
=>AHOK nội tiếp
b:
góc BMC=1/2*sđ cung BC=90 độ
=>CM vuông góc BC
góc CFE+góc CBM=90 độ
góc CBM+góc MCB=90 độ
=>góc CFE=góc MCB
góc CEM=1/2(sđ cung CM+sđ cung BA)
=1/2(sđ cung AM+sđ cung AB)
=1/2*sđ cung MB
=góc MCB
=>góc CEF=góc CFE
=>ΔCEF cân tại C
a : Tứ giác AHOK nội tiếp
- M là điểm chính giữa cung AC
=> OM ⊥⊥ AC tại K => OKA = 900
- AHOK có ˆAHO=ˆOKA=900 nên nội tiếp
b : Δ CEF cân
CM ⊥⊥ BM (CMB góc nội tiếp chắn nửa đường tròn)
CM là tia phân giác của ACF (do M là điểm chính giữa cung AC)
ΔΔCEF có CM là đường cao cũng là phân giác nên cân tại C
Quảng cáo
Bạn cần hỏi gì?
Câu hỏi hot cùng chủ đề
-
Đã trả lời bởi chuyên gia
103520 -
Hỏi từ APP VIETJACK
Đã trả lời bởi chuyên gia
68861 -
Đã trả lời bởi chuyên gia
56682 -
Đã trả lời bởi chuyên gia
47564 -
Đã trả lời bởi chuyên gia
44351 -
Đã trả lời bởi chuyên gia
36876 -
Đã trả lời bởi chuyên gia
35387
