Cho bốn điểm M(6; – 4), N(7; 3), P(0; 4), Q(– 1; -3). Chứng minh rằng tứ giác MNPQ là hình vuông
Lời giải Bài 9 trang 59 SBT Toán 10 sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 10.
Bài 9 trang 59 SBT Toán 10 Tập 2: Cho bốn điểm M(6; – 4), N(7; 3), P(0; 4), Q(– 1; -3). Chứng minh rằng tứ giác MNPQ là hình vuông.
Lời giải:
Ta có nên hai véc tơ cùng phương suy ra MN song song với PQ và MN = QP (1)
Ta có nên hai véc tơ cùng phương suy ra MQ song song với NP và MQ = NP (2)
Mà vậy MN = NP = PQ = MQ (3)
Từ (1); (2); (3) suy ra tứ giác MNPQ là hình thoi (4)
Ta có vậy MN NP.
Tứ giác MNPQ là hình thoi và có 1 góc vuông nên tứ giác MNPQ là hình vuông.
Xem thêm các bài giải sách bài tập Toán 10 bộ sách Chân trời sáng tạo hay, chi tiết khác:
Bài 1 trang 58 SBT Toán 10 Tập 2: Cho hai vectơ a) Tìm toạ độ của vectơ ...
Bài 2 trang 58 SBT Toán 10 Tập 2: Cho ba vectơ . Tìm toạ độ của các vectơ...
Bài 6 trang 59 SBT Toán 10 Tập 2: Cho điểm M(4; 5). Tìm toạ độ: a) Điểm H là hình chiếu vuông góc của điểm M trên trục Ox...
Bài 7 trang 59 SBT Toán 10 Tập 2: Cho ba điểm A(1; 1), B(2; 4), C(4; 4). a) Tìm toạ độ điểm D sao cho ABCD là một hình bình hành...
Bài 10 trang 59 SBT Toán 10 Tập 2: Tính góc giữa hai vectơ và trong các trường hợp sau...
Bài viết liên quan
- Giải Sách bài tập Toán 10 Chân trời sáng tạo Bài 1: Tọa độ của vectơ
- Giải Sách bài tập Toán 10 Chân trời sáng tạo Bài 2: Đường thẳng trong mặt phẳng tọa độ
- Giải Sách bài tập Toán 10 Chân trời sáng tạo Bài 3: Đường tròn trong mặt phẳng tọa độ
- Giải Sách bài tập Toán 10 Chân trời sáng tạo Bài 4: Ba đường conic trong mặt phẳng tọa độ
- Giải Sách bài tập Toán 10 Chân trời sáng tạo Bài tập cuối chương 9